Typical Year Rainfall Analysis for Cambridge-Somerville-MWRA Combined Sewer Overflow (CSO) Control Plans

Technical Information in Support of the December 15 ${ }^{\text {th }}$ Public Meeting:
Development of Future Typical Year of Rainfall
12.2.2022

This presentation provides an overview of the technical methodology used to estimate rainfall values for the updated "typical year" that drives the CSO Control Plan Updates being developed by Cambridge, Somerville, and MWRA. This also serves as a technical document to support information provided at the public meeting.

Who is this presentation for?

This presentation is intended for any resident, stakeholder, or practitioner who wants to dive deeper into how the "typical year" is being established. The typical year is used to assess how combined sewer system improvements would perform under a series of rainfall events.

[^0]Lead Author: Indrani Ghosh, Ph.D.
Senior Technical Leader, Weston \& Sampson
Lead Reviewer: Arthur DeGaetano, Ph.D.
Professor, Earth and Atmospheric Sciences Department, Cornell University

PRESENTATION OUTLINE

KEY DEFINITIONS \& GOALS

OBSERVED RAINFALL ANALYSIS

FUTURE TYPICAL YEAR

WHAT IS A CSO?

Combined sewer systems are systems that carry both sanitary flows and stormwater runoff. During large storm events, these systems sometimes cannot handle the additional volumes, resulting in discharge into nearest water bodies to avoid backup into streets, homes, and yards. This discharge or overflow is termed a combined sewer overflow (CSO).

Combined Sewer System:

Dry Weather Conditions in the Combined Sewer System*

Combined Sewer Overflow Event:

Wet Weather Conditions in the Combined Sewer System

WHAT IS A CSO CONTROL PLAN?

MassDEP

Requirements
CSO Control Plan Updates

Meets compliance

Data Driven

Actions to achieve
water quality goals
Establishes water quality and CSO discharge requirements.

A plan to meet water quality and CSO discharge requirements.

Evaluates how well proposed improvements perform under an agreed upon year of storm events (typical year)

A Typical Year is a full year of rainfall data that best represents rainfall conditions over a period of time.

As part of the CSO Control Plan Update, a "typical year" needs to be established to assess how planned improvements would perform under a series of rainfall conditions (the "typical year")

HISTORICAL RAINFALL PATTERNS

Looking at typical rainfall conditions is important because long-term rainfall variability shows substantial seasonal/decadal fluctuations with an overall increasing trend for annual total rainfall. If past is the key to the future, then in order to understand future rainfall patterns, it is important to study long term trend in future rainfall variability.

A typical year is required by EPA's CSO Control Policy.

The requirements include:

- Analyze rainfall records using statistics and the best available data.
- Test the performance of CSO controls during rain events on an annual average basis.

HOW IS A TYPICAL YEAR USED IN THE UPDATED CSO CONTROL PLAN?

The typical year is used throughout the CSO control planning process.

- During Development: To identify and test alternatives.
- During Implementation: Sets a benchmark to measure and assess progress.

Figure 1-1. Estimated Treated, Untreated and Total CSO Volume in the Typical Year, 1988-2021.

WHAT IS A TYPICAL YEAR UNDER CLIMATE CHANGE?

According to information available at this time, there is no EPA/DEP guidance to incorporate future rainfall projections into developing a typical year for CSO Control Plans.

This CSO Control Plan Update Process is unique because it establishes a typical year considering future climate change projections, including higher intensity rainstorms

WHAT IS A TYPICAL YEAR UNDER CLIMATE CHANGE?

The Future Typical Year is determined by considering both historic observed and modeled future rainfall parameters to understand how the system improvements will perform under the impacts of climate change. This methodology has been peer reviewed and vetted by climate science experts.

This presentation shows the methodology for evaluating the typical year considering both recent observed data and future climate change projections.

WHAT IS THE GOAL OF THIS TYPICAL YEAR ANALYSIS?

Determine the
"typical" or most average year of rainfall patterns over the past 26 years + under

future

 conditions*
Purpose

 The "typical" or most average year of rainfall patterns based on modeled future data will be used to evaluate alternatives for the CSO Control Plan Updates considering future climate change* Identify representative future typical year considering climate change and use observed rainfall pattern from the

OBSERVED
 RAINFALL

MODELED FUTURE RAINFALL PROJECTIONS

FUTURE TYPICAL YEAR

WHY DO WE NEED TO CONSIDER BOTH OBSERVED DATA AND FUTURE PROJECTIONS TO EVALUATE A FUTURE TYPICAL YEAR?

Observed data from rainfall gauges is detailed at 15 -min intervals, which is necessary to run Combined Sewer models for assessing system improvements.

Future rainfall projections from climate change models are needed to evaluate a typical year of rainfall in the future. However, future rainfall projections are only available at daily rainfall intervals and not at the 15 -min intervals necessary to run Combined Sewer models.

Therefore, the historical rainfall dataset is used to identify a year most representative of future rainfall projections to run Combined Sewer models for assessing system improvements.

HOW DO WE CONSIDER BOTH OBSERVED DATA AND FUTURE PROJECTIONS TO EVALUATE A FUTURE TYPICAL YEAR?

- This is a first of its kind approach,
- Involves collaboration with leading climate scientists, and
- Is consistent with the Massachusetts Climate Resilience Design Standards and Guidance.

```
Identified the Future Period
``` (2040-2069)

Assessed two Greenhouse Gas (GHG) Emissions Scenarios

Analyzed multiple Global Climate Models (GCMs)

Compared Results to Observed Rainfall Data

Identified 2050 Future Typical Year for use in Updated CSO Control Plans
(in-progress)

\section*{OBSERVED RAINFALL ANALYSIS}

\section*{OBSERVED RAINFALL ANALYSIS: Overall Steps}

The process for assessing observed data is as follows:

\section*{Rainfall Gauge Data is Processed} in 15 Minute Intervals
(2) Various Rainfall Parameters are Assessed

3 Deviation Analysis is Conducted for Two Scenarios

Step 1: The best available rainfall data from the past 26 years was collected and processed from physical rainfall gauges.

Rainfall data was processed from rain gauges maintained by MWRA at the following locations:

Boston
Harbor
COLUMBUS PARK
Gauge ID: BO-DI-2

\section*{OBSERVED RAINFALL ANALYSIS: Definitions of Parameters}

\section*{Step 2: Rainfall parameters assessed from each gauge include:} (see next slides for definitions)

These parameters help us understand typical rainfall

Step 2: Rainfall parameters assessed from each gauge include:

\section*{Consecutive Dry Days}

The annual average number of two or more consecutive days with less than 0.1 inches of rainfall.

\section*{Number of Back-to-Back} Events
The total number of independent storm events that occurred back-to-back (where 2 consecutive storm events are separated by
more than 12 hours but less than 24 hours).

\section*{Number of Storms}

The total number of independent storm events that occurred in a year, where independent storms are defined by a 12hour interevent time.

\section*{Total Annual Rainfall Depth}

The total amount of rainfall depth (in inches) that fell each year.

\section*{2 OBSERVED RAINFALL ANALYSIS: Definition of Rainfall Parameters}

\section*{Rainfall parameters deeper dive: \\ What does "Count of Storms Binned by Duration \& Depths" mean?}

Data on storm depth is "binned", meaning organized, by storm duration and
frequency of occurrence for that duration.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Count of Storms (for different durations of 15-min, 1-hr, 6-hr, 24-hr, or 1-day) are binned by design storm* depths for respective durations for the following return periods, based on Atlas -14**} \\
\hline Less than 3 months
(<3M) & 3 to 6 months (3M to 6m) & 6 months to 1 year (6M to 1Y) & \begin{tabular}{l}
1 year to 2 years \\
(1Y to 2Y)
\end{tabular} & Greater than 2 years
\[
(>2 Y)
\] \\
\hline
\end{tabular}

Count of Storms Binned by Duration \& Depths

\section*{Example}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Count of Storms (e.g., for 6-hr duration) are binned using the following 6-hr design storm* depths for the following return periods, based on Atlas -14**} \\
\hline Less than 3 months (<3M) & 3 to 6 months (3M to 6m) & 6 months to 1 year (6M to 1Y) & 1 year to 2 years (1Y to 2Y) & Greater than 2 years
\[
(>2 Y)
\] \\
\hline <0.72 in. & 0.72-1.19 in. & 1.19-1.67 in. & 1.67-2.08 in. & >2.08 in. \\
\hline
\end{tabular}

See following page for full data table of one of the rainfall gauges.
**Atlas 14: NOAA Atlas 14
Point Precipitation Frequency
*A design storm refers to a hypothetical storm event of a given depth of rainfall over a given duration and distribution that has an annual frequency of occurring

\section*{2 OBSERVED RAINFALL ANALYSIS: Analysis Results Example, Columbus Park}

*Average values for each rainfall parameter, at each gauge, are used in Step 3: Deviation Analysis

\section*{The figure below shows how Annual Rainfall Depth varies by year.}

Example Statistic: Observed Annual Rainfall (Example at Columbus Park Gauge)

OBSERVED RAINFALL ANALYSIS: Results for All Gauges

As shown by the table below, rainfall analysis results vary not only by year but also spatially by rainfall gauge location.

\footnotetext{
+ 24-hour depth from NOAA Atlas 14 is divided by a derived factor of 1.13 to convert 24-hour amounts to 1-day depth accumulations
}

The figure below shows the Annual Rainfall Depths for the observed years arranged in ascending order for one example gauge. Years at each gauge within \(\pm 10 \%\) of the observed annual rainfall depth are pre-selected for deviation analysis at that gauge.

Step 3: Deviation analysis determines the amount that a single measurement (year) differs from the average. Deviation analysis is used to understand rainfall variation across the 26 years and determine the year with the least deviation from the average.

\section*{DEVIATION ANALYSIS STEPS}
A. Absolute deviation: difference between an individual year and the average over the period of record. Difference between dashed averaged line and bar height.
B. Relative deviation: absolute deviation divided by the average over the period of record.
C. Weighted deviation: relative deviation times a weighting factor (two scenarios of different weights to rainfall parameters).

\section*{3 OBSERVED RAINFALL ANALYSIS: Deviation Analysis}

Two Scenarios were evaluated for Weighted Deviation Analysis in order to capture the most detailed available data for all steps in the analysis:

Sub-Hourly Data (more detailed) Scenario, considers
- The most holistic set of climate parameters that contribute to CSOs.
- Available observed 15 -min rainfall data, and ideal set of weights to rainfall parameters that seem appropriate for CSOs.

Daily Data (less detailed) Scenario, used to address the availability of only daily rainfall projections in the future (from global climate models).

\section*{Two Scenarios were evaluated for Weighted Deviation Analysis:}

\[
\begin{aligned}
& \text { * no weights to annual rainfall depth since these weights will be applied to years that have been pre- } \\
& \text { selected to be within } \pm 10 \% \text { of the average annual rainfall depth at each gauge. } \\
& \text { ** no weights to }<3 \text {-month storms/<3-month wet days since these storms are less likely to contribute to } \\
& \text { CSOs in a system that has completed a CSO Control Plan like MWRA. } \\
& \text { + } 24 \text {-hour depth from NOAA Atlas } 14 \text { is divided by a derived factor of } 1.13 \text { to convert } 24 \text {-hour amounts to } \\
& \text { 1-day depth accumulations }
\end{aligned}
\]

DRAFT

The following example illustrates the stepwise methodology to calculate the weighted deviation analysis, using observed data at Columbus Park Gauge, example year 2017, for the annual number of storms parameter.
A. Absolute deviation:

Absolute Deviation \(=\) abs \((\) Individual Year - Record Average \()\)
\[
\text { Absolute Deviation }=a b s(94-97)=3
\]
B. Relative Deviation:
\[
\begin{gathered}
\text { Relative Deviation }=\frac{\text { Absolute Deviation }}{\text { Record Average }} \\
\text { Relative Deviation }=\frac{3}{97}=0.03
\end{gathered}
\]
C. Weighted Deviation Using the Sub-Daily Scenario:

Weighted Deviation = Relative Deviation * Scenario Weighting Factor
\[
\text { Weighted Deviation }=0.03 * 0.04=0.0012
\]

The most representative observed year of rainfall is not simply the one closest to the observed annual average rainfall depth, but also the one that most closely matches other rainfall parameters analyzed

The years with the lowest weighted deviations (least variability from the average) for rainfall parameters considered for the two scenarios are as follows:

FUTURE TYPICAL YEAR

Rainfall data from climate change projections are only available with daily rainfall totals. Parameters assessed from each gauge, grid, and Global Climate Model (GCM), include:

These parameters help us understand future conditions with climate change.

\section*{FUTURE TYPICAL YEAR: Overall Process}

The process for assessing future data is as follows:
Model Future Rainfall Data is Processed for each Gauge in Daily Intervals

Model Future Data is Bias Corrected

Deviation Analysis Conducted to Identify Observed Historical Year that is most Representative of Model Future Average

Typicalization of the Representative Year

\section*{FUTURE TYPICAL YEAR: Key Terminology}

\section*{Key Components of the Future Typical Year Rainfall Analysis:}

\section*{MACA*}

Future daily global climate model (GCM) projections were obtained from the Multivariate Adaptive Constructed Analogs (MACA) statistically downscaled product

\section*{DOWNSCALED}

Statistical downscaling is the process of converting large scale global climate models into fine spatial scale so that the data is in close agreement with local data and can be used for station level analysis

\section*{GCM}

A global climate model (GCM) is a complex mathematical representation of the major climate system components (atmosphere, land surface, ocean, and sea ice), and their interactions

\section*{GAUGE}

MWRA rain gauge locations were used to download modeled future daily rainfall projections

\section*{GRID}

MACA projections used in the analysis are based on approx. 4-km resolution grids, with modeled future daily rainfall projections available for each grid for each GCM

\section*{PLANNING HORIZON}

A length of time in the future for which the plannings are made. For climate analysis, typically a 30 years average is taken. For example, 2050 planning horizon represents an averaging period of 20402069
*Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited

The future planning horizons, Global Climate Models, and Greenhouse Gas Emissions Scenarios used for the future typical year analysis are based on those that have been adopted by Massachusetts Executive Office of Energy and Environmental Affairs, as part of the Statewide Climate Resilience Design Standards and Guidance.

Rainfall Gauges modeling/
*Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology (2012), 32, 772-780
**https://www.gfdl.noaa.gov/climate-
Step 1: To determine the future typical year, modeled daily rainfall data were downloaded for the areas around the rainfall gauges.

MACA grids were identified and 3 grids around each of the 3 existing rainfall gauges were selected:
- Ward St
- Columbus Park
- Chelsea Creek

Multivariate Adaptive Constructed Analogs (MACA) is a statistical method for downloading future climate projection using downscaled Global Climate Models (GĢ.js)

\section*{FUTURE TYPICAL YEAR: Model Data}

\section*{Model rainfall data is processed for each gauge in daily time intervals.}

\section*{Model Future Rainfall Data:}

11 Global Climate Models (GCMs)*

\section*{Greenhouse Gas (GHG) Emission}

\section*{Scenarios:}

Low (RCP4.5) and High (RCP8.5)

Columbus

\section*{Planning Horizons:}

\section*{11 Global Climate Models}
(model historical to calculate uncertainties
from observed dataset)
Future (30 years): 2050 (2040 - 2069)
(forecasted/projected model data to study future change in rainfall patterns)
\begin{tabular}{cc|c|}
\hline BCC-CSM1-1 & CSIRO-Mk3-6-0 & IPSL-CM5A-MR \\
BNU-ESM & GFDL-ESM2M & MROC-ESM \\
CAN-ESM2 & HADGEM2-ES365 & MRI-CGCM3 \\
CNRM-CM5 & INMCM4 & \\
& &
\end{tabular}

Future dataset: 11 GCMs for each of the 3 grids for each of the 3 gauges for 30 years for both emission scenarios.
*The 11 Global Climate Models (GCMs) have been selected from a wider set of GCMs as adopted by the

Annual Rainfall Depth variability across the 11 Global Climate Models, for both GHG Emission Scenarios. This figure shows how rainfall projections are likely to vary in the future.
Shaded area
represents the
spread across
11 models

Dashed lines
represent the
\(330-\) model
year average
(11 models
over 30 years)

Bias Correction is the process of adjusting the future model data so that it aligns with observed data. Bias correction factor is the difference between the model historical data and the observed historical data and can be either positive or negative. The purpose of the bias correction process is to correct uncertainties in model future dataset based on observed data.

First, find the Bias Correction Factor by comparing observed data with historical model data for each GCM.

Then, apply that Bias Correction Factor to the respective model future data. This will "correct" the future data to best represent future conditions.

Future Model (2040-2069)
 Applied

\% Difference/Bias

\% Difference/Bias

Bias Corrected Future Prediction

Step 2: To evaluate future rainfall parameters, the bias correction factor for each GCM, grid, and gauge must be calculated. This is derived from comparison of observed data to modeled historical data.

The table shows an example of calculating the bias correction factor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{8}{|c|}{MODEL FUTURE, COLUMBUS PARK, RCP8.5} \\
\hline & \multicolumn{8}{|c|}{CNRM-CM5, GRID 1} \\
\hline & & & & \multicolumn{5}{|c|}{Count of Wet Days - 1-Day Depths} \\
\hline & & Consecutive Dry Days & Total Depth (inches) & <3M & 3M to 6M & 6M to 1Y & 1Y to 2Y & >2Y \\
\hline For some parameters, \% change was & Model Hist Avg (1996-2021) & 5.9 & 46.1 & 152.3 & 6.6 & 2.2 & 0.6 & 0.5 \\
\hline compared, while for others the difference in the two values was & Obs. Hist Avg, Columbus Park Gauge (1996-2021) & 5.9 & 47.1 & 119.8 & 7.1 & 2.5 & 0.9 & 0.9 \\
\hline compared. & Bias correction (\% change) & 0\% & 2\% & & & & & \\
\hline This was based on recommendation from & Bias correction (additive) & & & -32.5 & 0.5 & 0.2 & 0.3 & 0.5 \\
\hline
\end{tabular}

The figure below shows how bias corrected Annual Rainfall Depth is projected to vary by year for a sample GCM for a sample gauge

Total Model Future Rainfall : From Climate Model CNRM-CM5 (RCP8.5)*

\section*{3 FUTURE TYPICAL YEAR: Combining Future Projections with Observed Data}

Total Annual Rainfall: Observed and Model Future

Typical statistics from future years are used to identify observed year that best represents climate change conditions.

Climate change projections show higher variability of future annual rainfall compared to observed years.

Total Annual Rainfall: Observed and Model Future

Years at each gauge within \(\pm 10 \%\) of the observed annual rainfall depth are pre-selected for deviation analysis at that gauge.

Total Annual Rainfall: Observed and Model Future

Step 3: Deviation analysis evaluates the amount that a single measurement (year) differs from the average. Deviation analysis is used to understand rainfall variation across the 26 years under climate change.

\section*{DEVIATION ANALYSIS STEPS}
1. Absolute deviation: difference between an individual year and the period of record average.
2. Relative deviation: absolute deviation divided by the period of record average.
3. Weighted deviation: relative deviation times a weighting factor (two scenarios of different weights).

Historical Annual Rainfall (from sample rain gauge): Average from
Future Climate Model

\section*{FUTURE TYPICAL YEAR: Deviation Analysis}

\section*{Daily-Data Scenario was evaluated for Weighted Deviation Analysis:}

* No weights to annual rainfall depth since these weights will be applied to years that have been pre-selected to be within \(\pm 10 \%\) of the average annual rainfall depth at each gauge.
** No weights to \(<3\)-month storms/<3-month wet days since these storms are less likely to contribute to CSOs in a system that has completed a CSO Control Plan like MWRA.
+ 24-hour depth from NOAA Atlas 14 is divided by a derived factor of 1.13 to convert 24 -hour amounts to 1-day depth accumulations

\section*{Observed Year Most Representative of the Future}

The observed year that is most representative of future rainfall patterns is not simply the one closest to the projected future annual average rainfall depth, but also the one that most closely matches other rainfall parameters analyzed.

Total Annual Rainfall: Historical and Model Future
Years within \(10 \%\) of only historic averageYears within \(10 \%\) of only model future average

Years within 10\% of both historic and model future average

The rainfall events in the observed year that are most representative of future rainfall patterns are compared with the future Intensity-Duration-Frequency (IDF) curves based on projections that have been adopted by the Massachusetts Executive Office of Energy and Environmental Affairs, as part of the Statewide Climate Resilience Design Standards and Guidance.

\section*{4 FUTURE TYPICAL YEAR - Future Design Storm Projections}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{BINS} & \multirow[t]{2}{*}{PRESENT DAY
(NOAA ATLAS 14)
DEPTHS (IN.)} & \multirow[t]{2}{*}{2050 (2040-2069) RAINFALL DEPTH PROJECTIONS*} \\
\hline Duration & Return Period & & \\
\hline \multirow{4}{*}{15-minute} & 3M & 0.23 & 0.46 \\
\hline & 6M & 0.36 & 0.50 \\
\hline & 1 Y & 0.5 & 0.61 \\
\hline & \(2 Y\) & 0.62 & 0.76 \\
\hline \multirow{4}{*}{1-hour} & \(3 M\) & 0.38 & 0.78 \\
\hline & \(6 M\) & 0.61 & 0.87 \\
\hline & 1 Y & 0.85 & 1.06 \\
\hline & \(2 Y\) & 1.06 & 1.31 \\
\hline \multirow{4}{*}{6-hour} & 3M & 0.72 & 1.54 \\
\hline & 6M & 1.19 & 1.71 \\
\hline & 1 Y & 1.67 & 2.08 \\
\hline & \(2 Y\) & 2.08 & 2.57 \\
\hline \multirow{4}{*}{24-hour} & \(3 M\) & 1.14 & 2.37 \\
\hline & 6M & 1.85 & 2.63 \\
\hline & 1 Y & 2.60 & 3.22 \\
\hline & \(2 Y\) & 3.23 & 4.0 \\
\hline \multirow{4}{*}{1-day} & \(3 M\) & 1.01 & 2.10 \\
\hline & 6M & 1.64 & 2.33 \\
\hline & 1 Y & 2.30 & 2.85 \\
\hline & \(2 Y\) & 2.86 & 3.54 \\
\hline
\end{tabular}

The future rainfall projections used are best available projections from Cornell University, developed as part of the Massachusetts Executive Office of Energy and Environmental Affairs (EEA) Climate and Hydrologic Risk Project and adopted by the State's Climate Resilience Design Standards Tool*
*Using RCP 8.5 scenario, which has been selected by the Massachusetts Executive Office of Energy and Environmental Affairs for the Statewide Climate Resilience Design Standards and Guidance https://resilientma.mass.gov/rmat home/d esignstandards/

\section*{Observed (1996-2021)}

Average annual rainfall: 47.1"

\section*{Future (2040-2069), RCP8.5*}

Average annual rainfall: 49.5" \(\leftarrow\) From a Sample Gauge

*Using RCP 8.5 scenario, which has been selected by the Massachusetts Executive Office of Energy and Environmental Affairs for the Statewide Climate Resilience Design Standards and Guidance https://resilientma.mass.gov/rmat home/designstandards/

\section*{Comparing Representative Year Against Future Sub-Hourly Bins}

Substituting alternative events from other historical years of record would be targeted to add events with higher intensities over short durations and reduce the largest event.
\begin{tabular}{|c|}
\hline & & & \multicolumn{5}{|l|}{Count of storms - 15-minute depths, Atlas-14} & \multicolumn{5}{|r|}{Count of storms - 1 hour depths, Atlas-14} & \multicolumn{5}{|l|}{Count of storms - 6 hour depths, Atlas-14} & \multicolumn{5}{|l|}{Count of storms - 24-hour depths, Atlas-14} \\
\hline YEAR & \# STORMS & TOTAL DEPTH (IN) & <3M* & \[
\begin{aligned}
& 3 M \text { to } \\
& 6 M^{*}
\end{aligned}
\] & \[
\begin{gathered}
6 M^{*} \text { to } \\
1 Y
\end{gathered}
\] & \[
\begin{gathered}
1 \mathrm{Y} \text { to } \\
2 \mathrm{Y}
\end{gathered}
\] & >2Y & <3M* & 3M to \(6 M^{*}\) & \[
\begin{gathered}
6 M^{*} \text { to } \\
1 Y
\end{gathered}
\] & \[
\begin{gathered}
1 \mathrm{Y} \text { to } \\
2 \mathrm{Y}
\end{gathered}
\] & >2Y & <3M* & 3M to \(6 M^{*}\) & \[
\begin{gathered}
6 M^{*} \text { to } \\
1 Y
\end{gathered}
\] & \[
\begin{aligned}
& 1 Y \text { to } \\
& 2 Y
\end{aligned}
\] & >2Y & \(<3 M^{*}\) & 3M to \(6 M^{*}\) & \[
\begin{gathered}
6 M^{*} \text { to } \\
1 Y
\end{gathered}
\] & \[
\begin{gathered}
1 \mathrm{Y} \text { to } \\
2 \mathrm{Y}
\end{gathered}
\] & >2Y \\
\hline \multicolumn{3}{|l|}{Future (2040-2069) bins} & < 0.46 & \[
\begin{gathered}
0.46 \\
0.50
\end{gathered}
\] & \[
\begin{gathered}
0.50- \\
0.61
\end{gathered}
\] & \[
\begin{gathered}
0.61- \\
0.76
\end{gathered}
\] & > 0.76 & < 0.78 & \[
\begin{gathered}
0.78- \\
0.87
\end{gathered}
\] & \[
\begin{gathered}
0.87- \\
1.06
\end{gathered}
\] & \[
\begin{aligned}
& 1.06- \\
& 1.31
\end{aligned}
\] & > 1.31 & <1.54 & \[
\begin{aligned}
& 1.54- \\
& 1.71
\end{aligned}
\] & \[
\begin{aligned}
& 1.71- \\
& 2.08
\end{aligned}
\] & \[
\begin{aligned}
& 2.08- \\
& 2.57
\end{aligned}
\] & >2.57 & < 2.37 & \[
\begin{gathered}
2.37- \\
2.63
\end{gathered}
\] & \[
\begin{gathered}
2.63- \\
3.22
\end{gathered}
\] & \[
\begin{gathered}
3.22- \\
4.0
\end{gathered}
\] & > 4.0 \\
\hline 1992 TYP & 94 & 46.83 & 94 & 0 & 0 & 0 & 0 & 93 & 0 & 0 & 1 & 0 & 92 & 1 & 1 & 0 & 0 & 92 & 0 & 2 & 0 & 0 \\
\hline Representative 2050 (Observed) & 98 & 50.07 & 97 & 1 & 0 & 0 & 0 & 98 & 0 & 0 & 0 & 0 & 95 & 0 & 1 & 2 & 0 & 95 & 0 & 2 & 0 & 1 \\
\hline 2050 Typical Year (Targets) & +/-98 & +/-50 & +/-97 & \multicolumn{3}{|c|}{\(\sim 4\) events} & 0 & +/-98 & \multicolumn{3}{|c|}{\(\sim 4\) events} & 0 & 95 & 0 & 1 & 2 & 0 & 95 & 0 & 2 & 1 & 0 \\
\hline
\end{tabular}

\section*{NEXT STEPS}
- Finalize the Future Typical Year
- Finalize technical report related to development of Future Typical Year

\section*{THANK YOU}

Written comments to this Technical Information can be submitted by January 5th (include "CSO Control Typical Year" in the subject) to:

Cambridge: Catherine Woodbury, cwoodbury@cambridgema.gov```

[^0]: Disclaimer
 This presentation does not include a comprehensive review of the values and calculations included in the analysis.
 Further detailed information will be available in a technical report, available at a later date.

