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Climate Change Projections for 
the City of Cambridge 
Katharine Hayhoe, Anne Stoner, Rodica Gelca 

 

Climate is changing: in the Northeast, across the United States, and around the world. Over the last 

50 years, Massachusetts average temperatures have increased by 0.4oF per decade, and winter 

temperatures by twice that, 0.8oF per decade (NOAA, 2013). Annual average precipitation has been 

increasing at more than 2 inches per decade, with greatest increases in spring, summer and fall. 

(NOAA, 2013). Across the Northeast,  the frequency of heavy precipitation, including both rain and 

snow events, has increased by 74% from 1958 to 2011, accompanied by an increase in the 

magnitude of floods (Walsh et al., 2013a). The average length of the growing season in the 

Northeast increased by 10 days from 1901-1960 to 1991-2011 (Walsh et al., 2013a), while extreme 

heat days are becoming more frequent while extreme cold days become less frequent across the 

entire U.S. (Walsh et al., 2013a). 

In the past, climate changed as a result of natural causes, unrelated to human activity. These natural 

causes include increases or decreases in energy from the Sun, or natural cycles such as El Niño that 

operate inside the Earth’s climate system, or volcanic eruptions. Today, however, if natural causes 

were responsible for climate change, the Earth would be cooling; instead, it is warming (for further 

discussion, see Commonly Asked Question H in Walsh et al., 2013b). Human activities, including 

burning coal, gas and oil and deforestation, are producing increasing amounts of heat-trapping 

gases. These gases build up in the atmosphere, trapping the Earth’s heat that would otherwise 

escape to space and causing the planet to warm.  

As the Earth’s temperature increases, natural weather patterns are disrupted. The typical climate 

conditions used to establish building codes, design infrastructure, and manage weather risks are no 

longer the same as they were 50 years ago, and will be even more different 50 years from now.  

Model- and scenario-based projections of future climate can inform long-term planning by 

providing information on possible future conditions. This report summarizes projected changes in 
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average temperature and precipitation and selected temperature and precipitation thresholds and 

extremes for the city of Cambridge. 

Research Methods 
Over the coming century, climate will continue to change as a result of human activities. How much 

change depends on human choices, specifically what type of energy will be used used in the future 

to power transportation, industry, and infrastructure around the world. Higher scenarios of carbon 

emissions assumed continued dependence on fossil fuels such as coal, gas, and oil as the primary 

energy source (Figure 1, orange and red lines). Lower scenarios envision a transition from fossil 

fuels to non carbon-emitting renewable energy sources (Figure 1, green lines). To quantify a range 

of plausible human choices, the Intergovernmental Panel on Climate Change (IPCC) has developed 

two families of future scenarios: the 2000 Special Report on Emission Scenarios (SRES; 

Nakicenovic et al. 2000) and the newer 2010 Representative Concentration Pathways (RCPs; Moss 

et al. 2010).  

 Climate projections for Cambridge are 

based on higher and lower scenarios 

from both SRES and RCP: SRES A1fi and 

B1, and RCP 8.5 and 4.5 (Figure 1). 

Using the SRES scenarios ensures 

backwards compatibility with previous 

climate change impact assessments for 

the greater Northeast region, including 

the Northeast Climate Impacts Report 

(Frumhoff et al., 2007) and the Second 

U.S. National Climate Assessment 

(USGCRP, 2009). Using the new RCP 

scenarios ensures continued 

compatibility with new assessments 

such as the Third U.S. National Climate 

Assessment (in press). 

 At the higher end of the range, both the 

SRES and RCP higher scenarios (A1fi 

and 8.5) represent continued 

dependence on fossil fuels. In these 

scenarios, atmospheric carbon dioxide 

levels increase by more than three 

times compared to pre-industrial levels by 2100. At the lower end, carbon emissions in the SRES 

and RCP lower scenarios (B1 and 4.5) peak around mid-century and then decline.1 Atmospheric 

carbon dioxide levels approximately double relative to pre-industrial levels by 2100. Global mean 

temperature changes resulting from higher and lower scenarios range from 4oF (under lower) to 

                                                        
1 For atmospheric concentrations to decline, there would need to be a net uptake of carbon from the 
atmosphere. In other words, humans would have to take up more carbon than they emit. The relationship 
between emissions and concentrations is discussed in detail in the 2011 National Research Council report, 
“Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia” 
http://dels.nas.edu/Report/Climate-Stabilization-Targets-Emissions-Concentrations/12877 

 

Figure 1.  Future projections of climate change for Cambridge 
correspond to four scenarios: two higher scenarios (SRES A1fi 
and RCP 8.5), where human emissions of carbon dioxide and 
other heat-trapping gases continue to rise, and two lower 
scenarios (SRES B1 and RCP 4.5), where emissions peak and 
then begin to decline by mid-century. 
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9oF (under higher) by 2100. This range is based on the Intergovernmental Panel on Climate 

Change’s best estimate of climate sensitivity, that global mean temperature would increase by 3oC 

(5.4oF) under a doubling of atmospheric carbon dioxide relative to pre-industrial levels. 

Future scenarios are used as input to global climate models (GCMs). GCMs are complex, three-

dimensional models that are continually evolving to incorporate the latest scientific understanding 

of the atmosphere, oceans, and Earth’s surface. Originally, “GCM” stood for General Circulation 

Model, since the original focus of these physics-based models was to simulate the circulation of the 

atmosphere and ocean. Today, however, global climate models incorporate many other facets of the 

Earth’s climate system, including chemistry, biospheric processes, land use, etc. As output, GCMs 

produce geographic grid-based projections of temperature, precipitation, and other climate 

variables at daily and monthly scales.  

Some GCMs are better than others at reproducing important large-scale features of certain regions. 

One example of this is sea ice in the Arctic (e.g. Wang et al., 2007). However, it is not valid to 

evaluate a global model on its ability to reproduce local temperature or rainfall over a given city or 

region. Such limitations are to be expected in any GCM, as they are primarily the result of a lack of 

spatial resolution rather than any inherent shortcoming in the physics of the model. In fact, 

previous literature has showed that it is difficult, if not impossible, to identify sub-set of “better” 

GCMs for the continental U.S. (e.g. Knutti, 2010; Randall et al. 2007). For this reason, no attempt was 

made to select a sub-set of GCMs that performed better than others over the city of Cambridge; 

rather, multiple GCMs with a long development history spanning the range of likely climate 

sensitivity were used.  

Table 1. CMIP3 and CMIP5 global climate modeling groups and their models used in this analysis.  

ORIGIN CMIP3  
model(s) 

CMIP3 
scenarios 

CMIP5 
model(s) 

CMIP5 
scenario(s) 

National Center for Atmospheric Research, 
USA 

CCSM3 

PCM 

A1FI, B1  

A1FI, B1 

CCSM4 

 

4.5, 8.5 

Centre National de Recherches 
Météorologiques, France 

  CNRM-CM5 4.5, 8.5 

Commonwealth Scientific and Industrial 
Research Organisation, Australia 

  CSIRO-MK3.6.0 4.5, 8.5 

Geophysical Fluid Dynamics Laboratory, USA GFDL CM2.1 A1FI, B1 - - 

Max Planck Institute for Meteorology, 
Germany 

  MPI-ESM-LR 

MPI-ESM-MR 

4.5, 8.5 

4.5, 8.5 

UK Meteorological Office Hadley Centre HadCM3 A1FI, B1 HadGEM2-CC 4.5, 8.5 

Institute for Numerical Mathematics, 
Russian 

  INMCM4 4.5, 8.5 

Institut Pierre Simon Laplace, France   IPSL-CM5A-LR 4.5, 8.5 

Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean 
Research Institute, and National Institute for 
Environmental Studies, Japan 

  MIROC5 4.5, 8.5 

Meteorological Research Institute, Japan   MRI-CGCM3 4.5, 8.5 
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In this study, two sets of climate model simulations were used. The first, assembled between 2005 

and 2006, consists of models that contributed to phase 3 of the Coupled Model Intercomparison 

Project (CMIP3; Meehl et al., 2007). These are the results presented in the 2007 IPCC Third and 

Fourth Assessment Reports. Here, future projections are based on simulations from the 4 CMIP3 

climate models with SRES A1fi and B1 simulations used in the 2007 Northeast Climate Impacts 

Assessment and the 2009 Second National Climate Assessment: CCSM3, GFDL CM2.1, HadCM3 and 

PCM. The second set of climate model simulations consists of models that have contributed to phase 

5 of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012). These projections are 

used in the upcoming IPCC Fifth Assessment report and 2013 Third National Climate Assessment. 

Projections from 9 CMIP5 global climate models with daily temperature and precipitation outputs 

for the RCP 8.5 and 4.5 scenarios were used that are updated versions of CMIP3 models: CCSM4, 

CNRM-CM5, CSIRO-Mk3.6.0, MPI-ESM-LR, HadGEM2-CC, INMCM4, IPSL-CM5A-LR, MIROC5 and 

MRI-CGCM3. The full list of models used in this analysis is provided in Table 1. 

Global climate model output is usually too coarse to be able to resolve a specific city or state. For 

that reason, downscaling is typically used to generate location-relevant information. Downscaling 

incorporates new information – which can consist of either high-resolution modeling of physical 

processes, or incorporation of historical observations at the location of interest – into GCM 

projections to produce locally-relevant projections of temperature, precipitation, and humidity at a 

given location. This study uses the Asynchronous Regional Regresson Model (ARRM; Stoner et al., 

2012) to downscale daily maximum and minimum temperature, 24h cumulative precipitation, and 

daily maximum and minimum relative humidity to local weather station locations near Cambridge. 

ARRM is an updated version of the statistical downscaling model used in the city-level (not the 

gridded or state-level) projections for the 2007 Northeast Climate Impacts Assessment (Frumhoff 

et al., 2007) and described in Hayhoe et al. (2008; 2010). It is also the model being used to generate 

the high-resolution climate projections used in the 2013 U.S. National Climate Assessment. 

 ARRM is based on asynchronous quantile regression, a statistical technique that corrects each 

individual point on the distribution of daily values from historical GCM simulations to match 

observed values over the same time period. This correction is then applied to future projections to 

produce a distribution that is allowed to change over time, but more closely matches the conditions 

expected at the weather station on which the model is trained (Figure 2). More information on the 

ARRM method is provided in the peer-reviewed journal article, “An asynchronous regional 

regression model for statistical downscaling of daily climate variables” by Stoner et al. (2012). 

  

Figure 2. (a) Observed (black) and historical simulated 
distribution of daily maximum summer temperatures by 
three GCMs for a weather station in Chicago.  

 (b) Historical simulated (black) and future projected daily 
maximum summer temperature under the SRES A1FI higher (red) 
and B1 lower (orange) scenarios used in this analysis. 
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ARRM can be trained on any observational 

dataset to produce future projections at the 

temporal and spatial scale of those observations. 

For this project, high-resolution projections 

were developed for the nearest three long-term 

weather stations to Cambridge: Reading, Jamaica 

Plain, and Boston Logan Airport. Precipitation 

was also interpolated from these stations to 

three closer short-term weather stations whose 

records (less than 5 years) were not long enough 

to train the downscaling model: Cambridge, 

Belmont, and Brighton (Figure 2, Table 2). 

Relative humidity projections were calculated 

for Boston Logan only, as this was the only 

weather station with long-term obervations 

available. 

 

 

 

Table 2. Weather stations used in this analysis to generate high-resolution climate projections. 

STATION NAME ID LOCATION VARIABLE 
LENGTH 

OF 
RECORD 

CAMBRIDGE* US1MAMD0011 42.3876 -71.1253 Pr 2010-2012 

BELMONT* US1MAMD0018 42.3988 -71.1638 Pr 2011-2012 

BRIGHTON* US1MASF0004 42.3493 -71.1607 Pr 2011-2012 

READING USC00196783 42.5242 -71.1264 Tmax, Tmin, Pr 

 

1960-2012 

JAMAICA PLAIN^ USC00193890 42.3031 -71.1239 Tmax, Tmin, Pr 

 

1962-2012 

BOSTON LOGAN INTL AP USW00014739 42.3606 -71.0106 Tmax, Tmin, Pr, RH 1936-2012 

* These locations had insufficient data available to train the statistical downscaling model. Instead, we built a 
quantile regression model to predict precipitation at these locations based on conditions at the three long-term 
stations surrounding Cambridge. 

^ This station had too many missing data points in the precipitation record to produce reliable projections. 

  

 

Figure 3. Long-term (red) and short-term (blue) 
weather stations used in this analysis. 
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Results 

The most recent climate projections for the 

United States show future increases in average 

temperature and extreme heat, as well as 

decreases in the frequency of extreme cold 

events.  

 Precipitation patterns are expected to shift 

over broad geographical areas, with the 

northern latitudes generally becoming wetter 

and more southern latitudes drier, particularly 

in winter and spring (Walsh et al., 2013a). 

At the scale of global climate models (accurate 

to broad regions, rather than individual states) 

these patterns are expected to persist over the 

Northeast: warmer average temperatures, 

more frequent high temperature extremes, 

wetter winter and spring conditions, and little 

change in summer and fall precipitation. Using 

the methods described above, this analysis 

transforms these qualitative projections into 

quantitative information tailored to the individual weather stations surrounding Cambridge. 

Projections are summarized for two thirty-year average periods, 2030s (2020-2049) and 2070s 

(2060-2089) compared to the historical period 1971-2000. This report highlights the main results 

from the climate analysis; bar charts for all the climate indicators calculated in this analysis are 

provided in accompanying Excel files. 

Over the coming century, climate change is expected to increase average and seasonal 

temperatures in Cambridge. Average temperatures, currently around 50oF, are expected to increase 

by 2-3oF by the 2030s. By the 2070s, annual temperature is projected to increase by 4-5oF under 

lower scenarios and 7-8oF under higher (Figure 4).  Similar increases are projected for dewpoint 

 

Figure 4. Historical and projected future annual mean 
temperature, based on the average of three long-term 
weather stations shown in Figure 3. Yellow bars show 
projected changes under lower scenarios and red bars, 
under higher. CMIP3 are the older generation of global 
climate models, and CMIP5 are the newer generation. 
The ranges on each bar show the projections from all the 
different models in each group (4 models in CMIP3 and 9 
models in CMIP5). 

  

Figure 5. Historical and projected number of days per year with maximum temperature over (a) 90oF and (b) 
100oF. Yellow bars show projected changes under lower scenarios and red bars, under higher. CMIP3 are the 
older generation of global climate models, and CMIP5 are the newer generation. The ranges on each bar show 
the projections from all the different models in each group (4 models in CMIP3 and 9 models in CMIP5). 
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temperatures (see Excel files). Proportionally 

greater changes are also expected for summer 

by end of century as compared to winter (see 

Excel files).  

 Temperature extremes are also projected to 

change. This analysis looked at the number of 

days per year with maximum temperatures 

over 90oF and 100oF. Historically (from 1971-

2000) there are an average of 11 days per year 

over 90oF and only one day over 100oF every 

seven years or so. In the future, the number of 

both types of days is projected to increase. 

Changes under higher scenarios are much 

greater than changes under lower scenarios. 

For example, the number of days over 90oF is 

projected to increase from the historical 

average of 11 days per year to between 20 to 

30 days per year by the 2030s. By the 2070s, 

30 to 44 days per year over 90oF are expected 

under lower scenarios, and 55 to 70 days per year under higher scenarios (Figure 5, left). The 

number of days over 100oF, which historically occur only once every seven to eight years, are 

projected to occur on average once per year by the 2030s. By the 2070s, there could be 1 to 5 days 

per year over 100oF under lower scenarios and 6 to 15 days per year under higher scenarios 

(Figure 5, right).  

Average summer heat index offers a different way to look at the intensity of summer heat. 

Historically, summer temperature (night+day) averages around 70oF, while daytime summer heat 

index (calculated from daily maximum temperature and daily average relative humidity) hovers 

around 85oF. By the 2030s, summer heat index is projected to average around 95oF under both 

higher and lower scenarios. By the 2070s, average summer heat index is projected to exceed 100oF 

under lower scenarios and 110oF under higher scenarios (Figure 6). 

 Because extreme heat days are currently relatively rare in the historical record, the uncertainty in 

the exact number of days projected for the 2030s and 2070s is higher than the uncertainty in the 

increase in average annual or seasonal temperatures. This can be seen by comparing the vertical 

black bars in Figure 4 vs. Figure 5. However, it is virtually certain that the frequency of these days 

will increase in the future over climatological (20-30 year average) time scales. It is also very likely 

that these increases will be greater, on average, under higher as compared to lower scenarios by 

the 2070s compared to present-day. 

Average precipitation is projected to increase by an average of approximately 6 to 10 inches or 15-

20% by the 2070s compared to the historical period, consistent with projected increases in mid-

latitude precipitation. These increases occur primarily in winter and spring, consistent with the 

larger pattern of the same seasons at higher latitudes becoming wetter over the coming century 

(Figure 7). Precipitation intensity (a measure of the average amount of precipitation falling per day, 

defined as total annual precipitation divided by the number of wet days per year) is also expected 

to increase, by around +5% by the 2030s and +15% by the 2070s (see Excel files). Historically, the 

direction of predicted trends is consistent with observed changes across the Northeast region. In  

 

Figure 6. Historical and projected future summer heat 
index, based on projections for Boston Logan weather 
station (the nearest weather station with long-term 
humidity observations). Lighter gold bars show projected 
changes under lower scenarios and dark gold bars, under 
higher. Projections here are based on 8 CMIP5 models, 
as most CMIP3 models and one CMIP5 model did not 
have daily relative humidity projections available. 
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the future, these trends are expected to continue, with greater changes by 2070s relative to 2030s, 

but little to no difference between the changes projected under higher vs. lower scenarios. 

In addition to annual averages, this analysis calculated three types of indicators of extreme 

precipitation: (1) days with more than 2 inches of rain in 24 hours; (2) cumulative precipitation on 

the wettest 5 days in a row of the year; and (3) cumulative precipitation on the wettest 1, 2, 4, and 

7-day periods in 2, 10, and 30 years. All metrics of extreme precipitation show increases in the 

future, very roughly ranging from approximately 0 to +10% by the 2030s and +10 to +30% by the 

2070s (see Excel appendices for projections corresponding to each indicator). For example, the 

maximum 5-day precipitation amounts each year currently average around 5 inches in 5 days. By 

the 2030s, 5-day precipitation is projected to average between 5 and 6.5 inches; by 2070s, between 

5.5 and 7 inches (Figure 8). Changes in other indicators are summarized in the Excel Appendix. 

Conclusions 

Climate projections for the United States show that observed temperature increases are projected 

to continue, as are increases in high temperature extremes. Projections for the city of Cambridge, 

based on three nearby long-term weather stations, show similar trends in average and extreme 

  

  
Figure 7. Historical and projected future seasonal precipitation (in inches) for the 2030s and 2070s relative to 

1971-2000 for winter (Dec-Jan-Feb), spring (Mar-Apr-May), summer (June-July-Aug) and fall (Sept-Oct-Nov) for two 

(not three) long-term weather stations. Light blue bars show projected changes under lower scenarios and dark 

blue bars, under higher. CMIP3 are the older generation of global climate models, and CMIP5 are the newer 

generation. The uncertainty bars, as indicated by the vertical lines above and below each bar, show the range of 

projections from all the different models in each group (4 models in CMIP3 and 9 models in CMIP5). 
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temperature, with higher changes projected 

under higher scenarios as compared to lower, 

and by 2070s compared to 2030s.  

In general, projected temperature changes for 

the city of Cambridge that are simulated using 

the newer generation of climate models (CMIP5) 

tend to be slightly higher than those simulated 

using the older generation of models (CMIP5). 

Comparing these projections with others 

projections generated for the state of 

Massachusetts will not yield the same values for 

several reasons. First, the projections are for a 

different geographic region. In particular, 

proximity to the ocean can mitigate projected 

warming compared to inland locations. As such, 

temperature projections for the state would be 

expected to be slightly higher than projections 

for a coastal city. Second, the projections are for 

weather stations as compared to a gridded set of 

observations. Third, the projections could have been generated using a different combination of 

global climate models and/or a different type of statistical downscaling model. For all of these 

reasons, the projections summarized in this report can be expected to be similar but not identical to 

other, different projections generated by other regional efforts. 

Regional projections for northern mid-latitudes show increases in winter and spring precipitation, 

as well as increases in extreme precipitation. Again, projections for Cambridge show similar trends, 

with increases in annual average precipitation that are strongest in winter and spring, as well as 

increases in heavy precipitation and precipitation intensity. In contrast to temperature, there are 

few significant differences between changes projected under higher as compared to lower future 

scenarios. In general, however, changes projected by 2070s are usually larger than those projected 

by 2030s. 

There is greatest certainty in the direction of projected increases in annual and seasonal 

temperatures, high temperatures, and heavy precipitation, all of which show increases consistent 

with observed trends. There is moderate certainty in the relative proportion of precipitation 

increases by season. Although these reflect observed trends, they are more strongly affected by 

regional and local climate variability.  

  

 

Figure 8. Historical and projected future precipitation in 
the wettest 5 days of the year, in inches. Light blue bars 
show projected changes under lower scenarios and dark 
blue bars, under higher. CMIP3 are the older generation 
of global climate models, and CMIP5 are the newer 
generation. The uncertainty bars, as indicated by the 
vertical lines above and below each bar, show the range 
of projections from all the different model. 
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Reconciling Climate Projections for Cambridge 

Introduction 

Various agencies, organizations, and municipalities in Massachusetts have recently completed or are currently conducting climate 
impact and vulnerability assessments. These assessments typically use climate projections to quantify future impacts, which are in turn 
used as input to what are often costly adaptation and mitigation strategies.  

Given what’s at stake, it makes sense that a practitioner or user would want to compare these projections with observations, or with 
other projections used in a different assessment, to see if they match up. That is certainly a fair comparison if it’s apples with apples; 
but not if it’s apples with oranges. The purpose of this report is to describe the different choices on future scenarios, global climate 
models, statistical downscaling models, and observations that may go into generating these projections, how projections can and 
cannot be compared across methods and observations, and how the projections developed for the 2013 Cambridge Climate 
Vulnerability Assessment (CCVA) compare with projections used by other organizations in the region. 

High-resolution climate projections, such as those used in the 2007 Northeast Climate Impacts Assessment (NECIA) and in the 
Second and Third U.S. National Climate Assessments, are generally made up of four components:  

1. Future scenarios, which are used as input to the global climate models 
2. Global climate model simulations, which calculate future climate changes resulting from those scenarios 
3. Statistical downscaling models that combine global model projections and high-resolution observations to create high-

resolution model projections for a given location or grid 
4. Observations (either station-based or gridded) which are used train the statistical downscaling model 

When comparing one set of projections with another, the numbers will be different if any of these components are different. However, 
unless you know exactly which scenarios, models, observations and downscaling model were used to develop a given set of 
projections, it will be impossible to figure out why one set of projections differ from another, and therefore which set may be more 
reliable. It is essential to know which climate modeling approach and inputs were used to develop the climate projections before 
comparing the projections used in one assessment with any others. 

Most other assessments don’t have climate projections developed specifically for that project. Instead, they are obtained from a pre-
existing source or already-available dataset. Reliable pre-existing sources include NECIA, or other databases such as the DOE Green 
Data Portal (which are used in the SimClim framework) or the USGS GeoData Portal.  

Pre-existing databases are usually quite extensive, representing a significant investment of time and money. They have usually been 
carefully checked and validated before being released. For both of these reasons, it makes sense to use these resources, particularly for 
projects with a limited budget and scope. However, there are two potential risks associated with using an off-the-shelf dataset.  

1. Provenance information can be lost. Provenance information includes original scenarios, global climate models, downscaling 
methods, and observations used to develop the high-resolution projections. Loss of this information complicates comparison of 
climate projections and impacts across assessments. Without provenance information, it is unclear whether differences between 
the numbers being used by one project vs. another are the result of geographic resolution (e.g. comparing projections for the entire 
Northeast with projections for the city of Cambridge), downscaling method (e.g. using a quantile mapping vs. a quantile 
regression approach), or a different combination of global climate models, scenarios and/or time frames (e.g. comparing a 
projection for 2020-2049 with one for 2030-2059, or projections from a mid-range scenario with a higher scenario). 
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2. Inappropriate information may be used. Climate projections may be not actually correspond to the study location, with 
Northeast-wide projections being used as if they were valid an individual location, for example. In addition, failure to read the 
small print on the downscaling method and/or the observations used to train the method might mean that a downscaling approach 
may be used that is inappropriate for a coastal location or for precipitation extremes. Both of these issues appear to have occurred 
in projects other than the CCVA and are discussed in detail in the final Case Studies section of this report. 

The first sections of this report discuss what is a valid comparison and what is not: in terms of scenarios, global climate models, 
statistical downscaling methods, and observations used to generate the climate projections. 

In the final Case Studies section, this report addresses three specific questions raised by the city of Cambridge regarding the 
correspondence between the projections our team developed specifically for the city and (a) real observations, (b) NECIA-based 
projections, and (c) SIMCLIM-based projections.  
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What scenarios were used? 

Over the coming century, climate will continue to change as a result of human activities. How much climate will change depends on 
human choices, specifically what type of energy will be used in the future. Higher scenarios of carbon emissions assumed continued 
dependence on fossil fuels such as coal, gas, and oil as the primary energy source (Figure 1a, red line). Lower scenarios envision a 
transition from fossil fuels to non carbon-emitting renewable energy sources (Figure 1a, green line). After mid-century, changes in 
average temperature and other variables such as extreme heat days and heavy precipitation based on higher scenarios (Figure 1b, red 
bars) will be much larger than projections based on lower scenarios (Figure 1b, yellow bars). 

In the 2007 NECIA project, future projections were based on the SRES A1fi (higher) and B1 (lower) emission scenarios. Carbon 
dioxide emissions (and hence the resulting climate projections) for these scenarios are nearly identical to the newer RCP 8.5 (higher) 
and 4.5 (lower) scenarios used in the 2013 CCVA project. Other projects, however, such as those that use SIMCLIM input, may rely 
on mid-range scenarios such as SRES A2 (mid-high) or A1B (mid-low). Without knowing which scenarios were used as input to the 
analysis, it is impossible to compare apples with apples. 

Projections will be different if they were based on a different future scenario (e.g. high, medium, or low). 
 

 

  
Figure 1. This figure shows how different scenarios of carbon emissions (left) will result in very different projections of changes in temperature 
projections (right; here, projected changes in the number of days per year with maximum temperature exceeding 90oF at Boston Logan). 
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Which global climate models were used? 

Global climate models are complex, three-dimensional models of the atmosphere, oceans, and Earth’s surface. These models are all 
based on the fundamental physics of the Earth system. However, they can differ from one another in how they represent the various 
processes at work within the Earth’s climate system. There is no single perfect global model. Each one has different strengths and 
weaknesses. For this reason, best practice is to use multiple models. Future projections can then be based on the average (as indicated 
by the colored bars in Figure 2) and the range of projections resulting from the multi-model ensemble (as shown by the black lines or 
“whiskers” on each bar in Figure 2). 

For regional climate assessments, differences in how global climate models represent various physical processes might mean that one 
model estimates a different pattern of precipitation changes over a region as compared to another model. One model might be more 
sensitive than another model, producing a larger change in temperature for the same increase in carbon dioxide emissions. These 
differences between models mean that, although all models show future warming and most models show future increases in winter and 
spring precipitation over the Northeast, the exact numbers produced by different models can differ and there is no way to know for 
sure which model is “correct” (if any!) until the future happens. 

The NECIA project used projections from 3-4 CMIP3 global climate models; the CCVA project uses projections from 9 CMIP5 
global climate models. For some variables, such as the wettest day in two years, the first set of models (blue) gives nearly the same 
result as the second set of models (green; Figure 2, left). The black “whisker” lines all overlap; this means that there is no statistically 
significant difference between the projections. On the other hand, for other variables such as summer precipitation the first set of 
models (blue) shows increases of 1-2 inches by 2070s, while the second set of models (green) show no change at all (Figure 2, right). 
This is a big difference; but if you didn’t know which models were used to generate the projections you were using, you wouldn’t 
know if the differences were due to different global climate models or not. 

In general, we have more confidence in the projections from the CMIP5 models than the CMIP3 models for two reasons: first, in the 
CMIP5 average we used more models, so the average and range are based on a larger ensemble; and second, the CMIP5 models 
represent updated versions of older CMIP3 models. The updated versions of global climate models are usually either comparable or 
better than the previous versions of those same models.  

Projected changes will often differ if they were generated using a different set of global climate models 

  
Figure 2. This figure shows how different combinations of global climate models—here, four older CMIP3 models, in green, and nine newer CMIP5 
models, in blue—may give very similar results for some variables, such as the wettest day in two years (left), but very different results for other variables, 
such as summer precipitation (right). 
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Which statistical downscaling model(s) were used? 

Even the highest-resolution global climate model output is too coarse to be able to resolve a specific city such as Boston or 
Cambridge. For that reason, statistical downscaling models are usually used to generate more location-relevant information. (In some 
cases, high-resolution regional climate or dynamical downscaling models are also used. However, these models still produce output 
for grid cells ranging from 10 to 50km in size. As discussed in the next section on station-based vs. gridded observations, for city-
scale analysis. the output from these regional climate models would still need to be downscaled by a statistical model to an individual 
weather station, in order for projections to accurately reflected the impacts of local topography, such as the urban heat island effect or 
proximity to a coastline, on simulated climate.) 

Statistical downscaling combines global climate model simulations with historical records of at least 20 years of daily observations (to 
cover a range of weather conditions) to produce locally relevant projections of temperature and precipitation. Some methods, such as 
ARRM, can also downscale other variables such as solar radiation or humidity. Statistical downscaling models are “trained” using 
these observational datasets to produce future projections. Future projections are at the same temporal and spatial scale of the 
observations. As discussed in the next section, these projections “look” like the observations for the historical period, but change in 
the future as simulated by the global climate model.  

In the 2007 NECIA project, we trained the BCSD statistical downscaling model (the same one used to generate the projections 
available via the DOE Green Data Portal and used as input to the SimClim framework) on global climate model simulations (Figure 3, 
left) and a large 1/8th degree gridded dataset of daily maximum and minimum temperature and precipitation covering the entire 
Northeast. The resulting gridded projections were used for region- and state-wide averages (Figure 3, center). In addition, however, an 
early version of the ARRM statistical downscaling model was trained on individual weather stations for cities throughout the 
Northeast (e.g. Boston, Concord, New York). These projections were used for city-scale analysis of projected changes, focusing on 
extreme heat and precipitation (Figure 3, right). 

For the 2013 CCVA project, the latest version of the ARRM statistical downscaling model was trained on the nearest three long-term 
weather stations to Cambridge: Reading, Jamaica Plain, and Boston Logan Airport. These three long-term stations were used in 
downscaling because the three closer stations—Belmont, Brighton, and Cambridge—had no more than 2 years of data each. However, 

   
Figure 3. This figure compares the climate projections generated by a global climate model (left), statistical downscaling to gridded observations (center) 
and statistical downscaling to individual weather stations (right) covering the U.S. Northeast. Source: Hayhoe et al. 2008 
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because the long-term stations were not directly located in Cambridge, our analysis took one more step. Using the very short records, 
we developed a multivariate regression model (a linear model for temperature, and a quantile model for precipitation) connecting 
conditions at the short-term stations to what might be happening at the longer-term stations. Projections for the short-term stations, 
particularly for extreme values of temperature and precipitation such as the number of days per year over 100oF or the wettest day in 2 
or 10 years, are clearly less reliable. However, this regression approach can at least provide a general picture of Cambridge’s future 
climate and how it might differ from conditions at the longer-term stations. 

Statistically downscaled projections can differ in two key ways. First, they can differ based on the observational data used to train 
them. These differences are discussed in the next two sections on observational data. Second, they can differ based on the statistical 
downscaling model used. These differences are the focus of this section.  

Each model is based on a different statistical technique. Some simple techniques are easy and simple, but may not do a good job 
reproducing extremes, such as high or low temperatures or heavy precipitation events. Some more complex approaches do a better job 
at extremes, but may be more expensive and complicated to run. 

The research I am conducting with colleagues at the Geophysical Fluid Dynamics Laboratory, the leading climate modeling center in 
the eastern U.S., addresses exactly this issue. We compare different statistical downscaling methods to extremely high-resolution 
global model simulations for the end of the century under a higher scenario. Our goal is to assess the strengths and weaknesses of the 
different statistical methods. 

Based on our initial research, we can compare three downscaling methods: first, the monthly “quantile mapping” approach that is used 
in the BCSD method (e.g. region-wide downscaling in NECIA, 2007; Second National Climate Assessment, 2009); second, the daily 
“quantile mapping” approach such as is used in the BCCA method (e.g. SimClim); and third, the daily “quantile regression” approach 
that is used in ARRM (e.g. city-specific downscaling in NECIA, 2007; Third National Climate Assessment, 2013; CCVA, 2013).  

For average temperature, this initial comparison shows that any of these three methods is reliable (Figure 4, top row).  

For extreme cold temperatures, both monthly and daily quantile mapping-based methods such as are used in BCSD and BCCA 
exhibit a large bias that makes them unreliable at higher latitudes such as the U.S. Northeast (Figure 4, middle row). 

For extreme high temperatures, all methods show biases over some locations. Over the Northeast, however, the daily quantile 
mapping method as used in BCCA has by far the largest biases, ranging from 5 to 10oC (9-18oF) by end of century. This bias is 
about the same size as the projected change; hence, this statistical method is likely unreliable for projecting high temperature 
extremes in the Northeast (Figure 4, bottom row). 

This initial research is the basis for our recommendation of the use of the quantile regression-based method ARRM (Figure 4, right 
column) to develop the climate projections used in the Third National Climate Assessment (2013) and the Cambridge Climate 
Vulnerability Assessment (2013). A publication that compares these methods for other variables, including minimum temperature, 
precipitation, and relative humidity, is in preparation. 

Projected changes, especially temperature and precipitation extremes, will differ if they were generated 
using different statistical downscaling models. 

Our initial work demonstrates how certain statistical downscaling techniques may be more (and others 
less) appropriate for specific geographic locations and/or temperature & precipitation extremes. 
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THESE PRELIMINARY RESULTS ARE UNPUBLISHED AND MAY CHANGE PRIOR TO PUBLICATION 

DO NOT CITE 

MONTHLY QUANTILE MAPPING DAILY QUANTILE MAPPING DAILY QUANTILE REGRESSION 

Average Temperatures 

   

Very Cold Temperatures (1-in-1000 Coldest Day) 

   

Very Hot Temperatures (1-in-1000 Hottest Day) 

   

 

Figure 4. This figure compares the bias in maximum daily temperature projections generated by three different statistical downscaling techniques, 
compared to an extremely high-resolution global climate model simulations for the end of the century under a higher scenario. Different plots show the 
bias in extremely cold temperatures (the 1-in-1000 coldest day), average temperature (the 50th percentile), and extremely hot temperatures (the 1-in-
1000 hottest day) for three methods: (left) monthly quantile mapping, as used in the BCSD method for NECIA (2007); (middle) daily quantile mapping, as 
used in the BCCA method for SimClim; and (right) daily quantile regression, as used by the ARRM method in CCVA (2013). Source: Hayhoe et al. 2012 
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Which observations were used: station-based or gridded? 

High-resolution climate model simulations can be developed based on two very different types of observational data:  

1. Weather station data, which corresponds to an individual location, and 
2. Gridded data, where weather station data has been smoothed and interpolated onto a regular grid. 

Climate simulations generated by a statistical downscaling model are trained to match the observations at specific weather stations, 
such as Boston Logan Airport, or specific grid cells, such as a 1/8th degree grid covering the Northeast.  

Climate projections generated for one weather station are not intended to match observations at a different station. Similarly, climate 
projections generated for a regular grid covering a large area or even for an individual grid cell from that grid are not intended to 
perfectly match observations at a weather station, even if the weather station lies in that grid cell. Climate projections are only 
intended to match observations for the exact observations that we used to train the statistical downscaling model.  

What does this mean for station-based climate projections?  

It means that you can’t take temperature or precipitation projections developed for Boston Logan, for example, and compare them 
against historical observations from an inland location such as Reading. That is not a valid comparison. Any differences between the 
projections for Logan and the observations for Reading will be due to differences in the observations between those two stations, not 
differences between simulated vs. observed precipitation.  

Because Boston is on the coast, it is located in a region with steep temperature and precipitation gradients. As illustrated by Figure 
5(a), in the greater Boston area, observed average annual precipitation can differ by nearly 50% or almost 20 inches per year between 
one weather station vs. another. And, as shown in Figure 5(b), observed temperature also varies from one station to another. Inland 
locations such as Jamaica Plains or Reading have a stronger seasonal cycle, with relatively colder winters and warmer summers. More 
coastal locations such as Cambridge have milder winters and cooler summers, thanks to the moderating effects of the ocean on local 
climate. It is incorrect to compare projections corresponding to one station with observations corresponding to another. 

Always compare projections for a given weather station with observations from the same weather station. 

  
Figure 5. This figure shows observed (solid bars) and, for stations with less than 5 years of observational data, model-simulated (hatched bars) annual 
(a) precipitation (in inches) and (b) temperature (in degrees F) for weather stations near Boston MA averaged over the period 1971-2000. These plots 
illustrate how both precipitation and temperature can vary significantly from one station to the next, particularly at the seasonal scale, and hence why 
climate projections developed for one station should not be compared against observations from a different station. 
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What does this mean for grid-based climate projections?  

First, it means that you can’t take temperature or precipitation projections developed for the entire Northeast, for example, and expect 
them to match projections developed for an individual location such as Cambridge. That is not a valid comparison.  

We already know how today, when it is snowing in New Hampshire, it can be dry in Boston. When it is raining in Boston, due to a 
coastal storm, for example, it might be completely dry in upper state New York. In the same way, as storm tracks and precipitation 
patterns shift in response to global climate, future precipitation is likely to change by a different amount over Maine, for example, as 
compared to Massachusetts.  

Figure 6 shows the projected change in seasonal precipitation by end of century under a higher scenario across the eastern U.S.  

In winter and spring, there is a strong north-to-south 
gradient along the East Coast of the United States. 
More northern locations are expected to become 
wetter in winter and spring, while more southern 
locations may see little to no change. In summer, 
there is a coastal-to-inland gradient. Most of the 
mid-Atlantic and Northeast coast is projected to get 
a little wetter, while inland locations see no change. 
And in fall, most of the East Coast is expected to get 
wetter, except for a ribbon of projected drier 
conditions from Louisiana up through Pennsylvania, 
New York, and New Jersey and a tiny area of dry 
conditions over eastern Massachusetts. 

So while the direction of change should be similar 
within a broad geographic region such as the 
Northeast, there is no reason to expect the exact 
change in precipitation or temperature projected for 
Maine to be identical to New Jersey, or for the 
whole Northeast to be identical to Massachusetts. 

Projections for a larger area such as the 
Northeast will not match projections for 
a smaller area such as Massachusetts or 
an individual location such as 
Cambridge. Different local and regional 
climates respond differently to global 
change.  
 

 

  

 
Figure 6. This figure shows the projected change in winter (Dec-Jan-Feb), spring (Mar-
Apr-May), summer (Jun-Jul-Aug) and fall (Sept-Oct-Nov) precipitation by the end of the 
century under a higher (RCP 8.5) scenario, as simulated by a large set of the most 
recent CMIP5 global climate models. Precipitation changes are shown in percent relative 
to 1971-2000, with green colors showing areas that are projected to get wetter and 
brown colors showing areas projected to become drier. Images courtesy of M. Wehner 
as developed for the Third National Climate Assessment Chapter 2, Climate Science. 
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There are other more subtle issues associated with using gridded climate projections. These issues generally arise in regions where 
topography, and hence climate, varies over relatively small spatial scales. Such regions include mountains, and coastal areas near large 
lakes and oceans. They also include the greater Boston and Cambridge area. Figures 5 and 6 clearly illustrate how the coast has a 
noticeable effect on historical temperature and precipitation for this region. 

For many datasets of gridded observations, such as the 1/8th degree VIC dataset developed by Ed Maurer and the updated 1/16th degree 
dataset developed by Ben Livneh, if a grid cell contains any ocean area, its value is set to N/A. That means that if a location such as 
Cambridge lies within a grid cell that is even partly over the ocean, the value of the entire grid cell will be set to N/A and there will 
not be any data available for the location you want. Instead, you’ll only have access to data from a grid cell adjacent to the one you 
want, which might encompass the locations of Reading or Jamaica Plain, but not the locations of Cambridge nor Boston Logan 
because the latter are too close to the ocean. 

Furthermore, a gridded dataset does not correspond to any specific weather station. It is the interpolated average of conditions over the 
area in the grid, informed by the nearest available weather stations. In areas where there is a sharp gradient in temperature and 
precipitation over a relatively short spatial scale, the grid will give you the smoothed average value, which may not actually occur 
anywhere in the grid. 

Picture a steep mountain slope and river valley in Colorado. A single grid cell at 1/8th of a degree may contain everything from the top 
of the mountain to the bottom of the river valley, and half way up the other side. Temperature will be the average of that area as 
captured by whatever data may be available, scaled by elevation. Does the grid cell’s average temperature actually occur from day to 
day at a specific location in the mountain or valley? It may not; the grid cell “observation” is just the average of across the entire area. 

When these gridded observed datasets are used as the basis for producing high resolution climate projections with a statistical 
downscaling model, the output of the model looks exactly like the input observations: a regular grid, with N/A values if any part of the 
grid is over the ocean, and average conditions that represent the areal average over the entire grid, not what might be expected at any 
given point in the grid, not even the center. 

Gridded datasets are ideal for use over a large area, at the scale of half a state or larger, where the user wants a continuous surface, or 
wants to compare what might happen over a large region. For example, the Northeast-wide and state-wide projections and maps used 
in the NECIA project were based on a gridded dataset (Figure 3, center). If we hadn’t used gridded data, it would have been 
impossible to make maps. However, to look at the impacts of climate change on individual cities—Boston, New York, Concord—we 
did NOT use a gridded observational data set. Gridded data provides too coarse an average for a city-scale location. Even worse, for 
cities on the coast, such as Cambridge, Boston, or New York, the gridded data may not even have a grid cell over that location. 
Instead, for city-level analysis in the NECIA project we performed downscaling to individual weather stations (Figure 3, right).  

Examples of high-resolution climate projections that use the Maurer et al 1/8th degree regular grid as input to their downscaling 
include the BCSD and BCCA approaches (available via the Green Data Oasis and as input to the SimClim visualization model), the 
area-wide climate projections developed for NECIA (2007), and the ARRM approach (available via the USGS GeoData Portal).  

Using gridded instead of station-based projections can be problematic in areas such as mountains or 
coastlines where local topography and local climate conditions change rapidly from one location to 
another.  
 FALL	
  SUMMER	
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What was the time frame of the observations used? 

Climate simulations generated by a statistical downscaling model are not only trained to match the observations at a specific location; 
they are also trained to match those observations over a specific time period. For NECIA, this time period was 1961-1990. For the 
CCVA, this period is 1960 to 2012. Climate projections are not intended to match observations for a different time period than the 
statistical downscaling model was trained on.  

What does this mean?  

It means that observed annual precipitation for Boston Logan airport for 1960-2012 should match modeled annual precipitation for 
Boston Logan for the same time period. However, observed annual precipitation for 1980-1989, for example, may not be a good 
match for modeled precipitation for the same time period. And under no circumstances should you expect modeled precipitation to 
capture the storm of ’02 that occurred on July 12, or the drought of ’67 that lasted from April to October - it won’t. 

Why doesn’t modeled climate match observed over these shorter time scales? It’s not due to error; it’s due to the intrinsic nature of 
climate model simulations. Over short time frames, observations and model simulations do not match—and should not be expected to 
match—because climate models are physics-based, not statistics-based, models. Using nothing more than the seven primitive 
equations that describe the properties of energy, water, and air in the atmosphere, climate models develop their own chaotic patterns of 
natural variability. These patterns include both day-to-day weather and longer cycles like El Niño and the North Atlantic Oscillation. 
Essentially, climate models represent an “alternate Earth”, with the same emissions of heat-trapping gases from human activities and 
the same overall patterns of natural variability, but different day-to-day and year-to-year conditions. 

Over climate time scales, typically defined as the average of 30 years or more, most natural variability averages out. Over these time 
scales, observations can be expected to match modeled values. Over shorter time frames, however, they cannot. 

Table 1 compares observed precipitation indicators for Boston Logan airport with the same values simulated by 8 global climate 
models for the identical period of time used to train the statistical downscaling model, 1960-2012. This comparison shows that, while 
some models are slightly wetter and others, slightly drier than observed, simulated values are generally within an inch of observed 
values for the annual average, and a tenth of an inch for precipitation percentiles.  

Always compare projections with observations over climatological time scales of 30 years or more. 

 

Table 1. This table compared observed (first column) with model-simulated (remaining columns) precipitation for Boston Logan airport station for the 
period 1960 to 2012, the same period used to train the statistical downscaling model used to downscale projections from each of the global models listed 
above. The table compares mean and median precipitation as well as the 75th, 90th, and 95th percentiles (e.g. the 1-in-4, 1-in-10 and 1-in-20 events) and 
the highest single-day precipitation event ever recorded in that period – in other words, the most extreme value in the record. 



 
 

  

Katharine Hayhoe 13 

 

Reconciling Climate Projections for Cambridge 

Case Studies 

Comparing CCVA Projections with Observations 
For the 2013 Cambridge Climate Vulnerability Assessment (CCVA), we developed future projections for the 3 nearest long-term 
weather stations to Cambridge: Boston Logan, Jamaica Plains, and Reading.  

Changes in temperature and precipitation and a host of secondary indicators were calculated individually for each of these stations. 
However, the bar charts summarizing projected changes by the 2030s and 2070s compared to the historical period initially showed the 
averages across these three stations. In other words, the values on the bar charts did not represent any one weather station, but rather 
the averages of Boston Logan, Jamaica Plains, and Reading combined. 

Comparing this average to observed precipitation in Cambridge suggested that the average was too high. Examining the three weather 
stations, we determined that the Jamaica Plains precipitation record was too short to reliably train the statistical downscaling model 
and removed it from the average. However, questions remained regarding why the average did not match the record of any one station. 

The problem was simple: the bar charts were showing the average over multiple stations. Moreover, these multiple stations had with 
very different values of annual average and total precipitation (Figure 5). Finally, nowhere in the plots nor the data files were 
observations compared directly to model simulations. 

To address this issue, we: 

1. Re-generated all daily temperature and precipitation data files so they now contain observations and model simulations side-
by-side. These files are in the DropBox directory ARC_Kleinfelder/Cambridge/Data/Primary Climate Variables/Primary 
Indicators/ 
 
Sample file for Boston Logan, containing observed and CMIP3 global climate model simulated precipitation in inches: 
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2. Calculated all secondary indicators for observations as well as for model simulations, using identical calculation methods. 
3. Generated annual and 30-year average secondary indicator files for each station containing observations side-by-side with 

model simulated values. These files are in the DropBox directory ARC_Kleinfelder/Cambridge/Data/Secondary Climate 
Indicators/ 

Sample annual file for Boston Logan, containing observed and CMIP3-based simulations of days per year over 90oF 

 

4. Created summary Excel spreadsheets comparing the mean and percentiles of historical daily temperature and precipitation for 
each individual weather station (observed) and climate model (simulated). Files for all weather stations and variables are in 
the DropBox directory ARC_Kleinfelder/Cambridge/Plots and Comparisons/ and are named 
“Variable.Obs.Mod.Comparison.xlsx” 

Sample file for Boston Logan, comparing observed vs. CMIP3-based historical simulations of maximum temperature, 
including the mean, the median, the highest and lowest values in 30 years, and percentiles ranging from the 5th to the 95th. 
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5. Created individual Excel bar charts showing projected changes in secondary climate indicators for each individual station (so 
it is clear which projections should be compared to which station), and added historical observed values to each chart. These 
files are in the DropBox directory ARC_Kleinfelder/Cambridge/Plots and Comparisons/ and are named 
“StationName.temp.pr.indicator.bar.charts.xlsx” 

Sample plot for Boston Logan showing observed (black) and simulated (blue) annual precipitation for the historical period, 
and future projections for 2030s and 2070s 

 

Comparing CCVA with NECIA Projections 
In order to ensure the backwards compatibility of the 2013 Cambridge Climate Vulnerability Assessment (CCVA), we developed 
projections based on both the new CMIP5 global climate model simulations as well as the older CMIP3 global climate model 
simulations used in the Northeast Climate Impacts Assessment (NECIA). It’s obvious that the older CMIP3-based NECIA projections 
and the newer CMIP5-based CCVA projections use different global climate models. However, shouldn’t the older CMIP3-based 
CCVA projections match NECIA?  

CMIP3-based CCVA and NECIA projections do not match and should not be expected to match because NECIA projections were 
developed for the entire Northeast region using a gridded dataset and the BCSD statistical downscaling model. CCVA projections 
were developed for Cambridge using individual weather stations and the ARRM downscaling method. As discussed previously, while 
the direction of change should be similar within a given geographic region, there is no reason to expect the exact change in 
precipitation or temperature at a single location to be identical to the regional average. In addition, the two approaches used different 
downscaling methods that will give different results for temperature and precipitation extremes (although they should give similar 
values for changes in average conditions). 

NECIA projections developed specifically for Boston Logan weather station using an earlier version of ARRM should be very similar 
to the CMIP3-based CCVA projections for the same weather station. In that case, the only difference would lie in the version of the 
statistical downscaling model used, and the additional 6 years of observed weather data used to train the downscaling model for 
CCVA as compared to NECIA (the years 2007-2012 were not available when the NECIA analysis was being done). 
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Reconciling Climate Projections for Cambridge 

Comparing CCVA with SimClim Output 
SimClim is a visualization tool that takes high-resolution climate projections as input and interpolates them to a given region of 
interest. SimClim is not a downscaling model and does not generate any climate projections. This information comes from elsewhere 
and is used as input to SimClim. 

Information regarding the current inputs to SimClim was not readily accessible online; hence, we contacted Peter Urich at 
CLIMSystems directly to inquire regarding the origins of the climate projections used in SimClim. According to Peter, the current 
version of SimClim uses gridded 1/8th degree BCCA downscaled projections (i.e. daily quantile mapping).  

As discussed above, use of this dataset is problematic for two reasons. First, gridded projections do not resolve coastal areas. Any grid 
with partial ocean area is set to N/A. Although SimClim partially addresses this by interpolating to a higher-resolution grid, it does not 
do so by introducing any new information; the interpolation is merely statistical. Hence, it is questionable whether SimClim-based 
simulations actually contain any original information for a coastal location such as Cambridge.  

Second, as shown in Figure 4 (center), the daily quantile mapping method is subject to relatively large biases for both extreme cold 
and hot temperatures (precipitation biases TBD). Based on these preliminary analyses, we would not yet recommend use of this 
method for future projections in this region and we expect that projected changes using the BCCA approach may be quite different 
than changes projected by the ARRM method (Figure 4, left), even if the same global climate models and scenarios are used. 

 

 

 


