Design Review Submission

Existing Context
- Master Site Plan 4
- Context Alignments 5
- Site Entry 6
- Urban Edge 7
- Existing Neighborhood Images 8

Proposed Design
- Design Narrative 10
- Rendered Views
 - Morgan Avenue View 12
 - North East Corner View 15
 - Morgan Avenue View 19
 - North West Corner View 21
 - Main Entry View 22
 - West Facade View 23
 - Water Street View 24
 - Water Street View - Electrochromic Glass 27
 - Electrochromic Glass - Tint Stages 28
 - Glass Type & Properties 29
 - South East Corner View 30

Site Lighting Diagram
- Street & Landscape Trees 91
- Shrubs & Groundcovering 92
- Site Materials and Furniture 93
- Outdoor Bike Parking Diagram 94
- Open Space Connectivity 95
- Cambridge Crossing Overall Planting 96
- Cambridge Urban Forest Master Plan 97

Checklists
- Zoning Compliance Checklist 102
- Design Guideline Compliance 104

Appendix
- Cambridge Departmental Reviews 110
- Overall Project Metrics 123
- Life on Street 124
- Q1/Q2 Gap 125
- Ownership 126
- Destinations 127
- Retail Cluster 128
- Blue Bike Solar Analysis 129
- Sight Line Diagram and Autoturn Analysis 131
- Bike Facilities Enlarged Plans 132
- West End Entry / Exit 134
- Level 01 Sidewalk Bench Seating & Solar Louver 135
- Q1/Q2 Scale Comparison 136
- Extrusion Projection Increase 137
- South East Corner Wall Axon 138
- South West Corner Wall Axon 140
- Site Grading 141

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sections</th>
<th>Site</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Section E-W</td>
<td>Site Lighting Diagram</td>
<td>48</td>
</tr>
<tr>
<td>Building Section N-S</td>
<td>Street & Landscape Trees</td>
<td>49</td>
</tr>
<tr>
<td>Elevations</td>
<td>Shrubs & Groundcovering</td>
<td>50</td>
</tr>
<tr>
<td>North Elevation</td>
<td>Site Materials and Furniture</td>
<td>51</td>
</tr>
<tr>
<td>South Elevation</td>
<td>Outdoor Bike Parking Diagram</td>
<td>52</td>
</tr>
<tr>
<td>East / West Elevations</td>
<td>Open Space Connectivity</td>
<td>53</td>
</tr>
<tr>
<td>Elevations - Enlarged Views</td>
<td>Cambridge Crossing Overall Planting</td>
<td>54</td>
</tr>
<tr>
<td>Glazing Types</td>
<td>Cambridge Urban Forest Master Plan</td>
<td>55</td>
</tr>
<tr>
<td>Facade Materiality - Entry / Lobby</td>
<td>Civil</td>
<td>56</td>
</tr>
<tr>
<td>Facade Materiality - West / South Facing</td>
<td>Lot Site Plan</td>
<td>57</td>
</tr>
<tr>
<td>Facade Materiality - South Facade</td>
<td>Adjacent Street Cross Sections</td>
<td>58</td>
</tr>
<tr>
<td>North Facade ‘Gaskets’ Articulation</td>
<td>Subdivision Plan</td>
<td>59</td>
</tr>
<tr>
<td>North Facade Articulation</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>South Facade ‘Gaskets’ Articulation</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>South Facade Articulation</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Sustainability Goals & Achievements</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Resiliency and Acoustics</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Wind Study: Summer Existing</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Shadow Study: Existing Conditions</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Shadow Study: Parcel Q 2 Net Conditions</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Proposed Exterior Signage Locations</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>LEED Design Narrative</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>LEED Score Card</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Illustrative Site Plans</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Site Section - Water Street</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Site Section - MBTA Property Line</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Site Section - Morgan Avenue</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Site Section - Plaza</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Plaza View</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Water Street and Morgan Avenue View</td>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>

Table of Contents

- Design Review Submission
- Existing Context
 - Master Site Plan
 - Context Alignments
 - Site Entry
 - Urban Edge
 - Existing Neighborhood Images
- Proposed Design
 - Design Narrative
 - Rendered Views
 - Morgan Avenue View
 - North East Corner View
 - Morgan Avenue View
 - North West Corner View
 - Main Entry View
 - West Facade View
 - Water Street View
 - Water Street View - Electrochromic Glass
 - Electrochromic Glass - Tint Stages
 - Glass Type & Properties
 - South East Corner View
- Design Concepts
 - Floor Plan - Ground Level
 - Floor Plan - Mezzanine Level
 - Floor Plan - Level 2
 - Floor Plan - Level 3
 - Floor Plan - Level 4
 - Floor Plan - Level 5
 - Mechanical Penthouse Plan
 - Roof Plan
- Floor Plan - Parking Level 2
- Floor Plan - Parking Level 1
- Articulation Dimensioning - Floor Plans
- Site Lighting Diagram
- Street & Landscape Trees
- Shrubs & Groundcovering
- Site Materials and Furniture
- Outdoor Bike Parking Diagram
- Open Space Connectivity
- Cambridge Crossing Overall Planting
- Cambridge Urban Forest Master Plan
- Civil
- Lot Site Plan
- Adjacent Street Cross Sections
- Subdivision Plan
- Zoning Compliance Checklist
- Design Guideline Compliance
- Cambridge Departmental Reviews
- Overall Project Metrics
- Life on Street
- Q1/Q2 Gap
- Ownership
- Destinations
- Retail Cluster
- Blue Bike Solar Analysis
- Sight Line Diagram and Autoturn Analysis
- Bike Facilities Enlarged Plans
- West End Entry / Exit
- Level 01 Sidewalk Bench Seating & Solar Louver
- Q1/Q2 Scale Comparison
- Extrusion Projection Increase
- South East Corner Wall Axon
- South West Corner Wall Axon
- Site Grading

Checklists
- Zoning Compliance Checklist
- Design Guideline Compliance

Appendix
- Cambridge Departmental Reviews
- Overall Project Metrics
- Life on Street
- Q1/Q2 Gap
- Ownership
- Destinations
- Retail Cluster
- Blue Bike Solar Analysis
- Sight Line Diagram and Autoturn Analysis
- Bike Facilities Enlarged Plans
- West End Entry / Exit
- Level 01 Sidewalk Bench Seating & Solar Louver
- Q1/Q2 Scale Comparison
- Extrusion Projection Increase
- South East Corner Wall Axon
- South West Corner Wall Axon
- Site Grading
1

Existing Context
2
Proposed Design
151 Morgan Avenue (Parcel Q2) is a proposed commercial laboratory / office building of approximately 163,794 GFA within the mixed-use Cambridge Crossing development. The six story building is comprised of five tenant levels topped by a single level mechanical floor, two stories of below grade parking and building support spaces throughout. Parcel Q2 is located at the corner of Water Street and Morgan Avenue. The north parcel line is along Morgan Avenue and the west is along Water Street. The south parcel line abuts the new transit center being constructed by the MBTA. The east parcel line faces Parcel Q1 with an outdoor plaza in between.

SCALE & MASSING

The massing of the building is guided by the 85’ maximum building height of the development, the build-to lines along each orientation of the parcel and the base, middle and top organization of the building facades. The mid-rise 85’ height restriction and approximate 300’ length of the parcel suggested a horizontal orientation of the building. The horizontality of the massing is expressed as a series of stacked extrusions of varying lengths that visually breakup the building into several smaller masses with a clearly delineated base, middle and top. The massing responds to each of the build to lines of the parcel differently.

To the north and the west, the massing is built to the public realm to create a strong street edge along Morgan Avenue and Water Street. To the south, the setback provides a space for landscaping and a spatial buffer between the two functions. Along the east, the massing is setback 9’ from the build-to line to maximize the plaza space between it and parcel Q1. The first floor on the east side is cut back further to create a covered public porch. The expression of stacked extrusions oriented lengthwise along the east-west axis of the parcel, create horizontal datums to delineate floor lines at the base, middle, and top of the massing. The extrusions are defined and separated by a different “gasket” material. The composition of the extrusions and gaskets create variability that is intended to provide scale and distinguishable components along each façade. At the ground level, the extrusions are eroded to balance transparency, solidity, and differentiation from the upper body of the building. At level 4, the stacked extrusions are set back to emphasize a podium along the north façade. The stepping of the massing allows solar access to mitigate shadows to the proposed park along Morgan Avenue and a generous terrace facing north with views to beyond.

FACADES AND MATERIALITY

The facades are designed to make Q2 into a gateway as you enter Cambridge Crossing. Accordingly, the most interesting facades as the sides that frame the Water street entrance from the neighborhood and the plaza entry from the MBTA station.

The east and west facades are articulated as the end grains that push inward and outward to amplify the stacking of the extrusions. On the east, the extrusions give depth and visual vibrancy to the facade. At the ground level, the extrusions are setback to create a covered, programmable urban space with a mixture of hardscape and plantings that face the new Station Plaza and Parcel Q1. On this façade, there is a secondary entry to bike parking and the garage elevator and lobby. The elevator and lobby serve as an entry point for bicycle commuters who will have access to internal bicycle storage facilities located on the ground floor with auxiliary parking available via elevator on the parking level below. The varied end grain of the extrusions along the west facing Water Street provide similar visual interest to the east, providing a visual cue from the neighborhood to the entry into Cambridge Crossing from the south. On the ground floor of the west façade facing the street, the end grain of the extrusion provides a location for the vehicular entry and exit doors and loading docks. On the north and south facades, the extrusion vary in length and scale. The north and south façade are distinct from each other due to their orientation, function, and articulation.

The primary “front door” for the building is on the north side of the building along Morgan Avenue which provides direct access to the main building lobby. The entry is conceptually located in the gasket between two extrusions on the ground floor and act as a void between them. The void in the massing is intended to break up the length of the facade. On the exterior there is a large canopy which demarcates the main doors along Morgan Avenue. The canopy provides respite and a place of pause prior to entering and exiting the building. Above the ground floor, the north façade maximizes the percentage of glass to provide views to the public realm and green spaces across Morgan Avenue. This large amount of glazing also takes advantage of the benefit of north facing glass for tenants. The south façade faces the bus depot and like the north is a composition of extrusions. Yet, the south façade has unique circumstances which differentiates its articulation from the north.
There is an increased solid to void proportion to each extrusion due to less interesting exterior views and the southern solar orientation.

The southern façade relies on the compositions of the extrusions and gaskets to provide variability and express masses stacked on top one another. On levels 2 through 5, the glazing consists of vertically proportioned punched windows with a larger field of curtainwall between the two extrusions. The material palette of the building utilizes textured ribbed metal panel, curtain wall and metal plate as its three basic elements. The solid portion of the extrusions are articulated with a vertical grain using metal ribbed panels with curtain wall system at the openings. The curtain wall on the length of the extrusions have shadowbox glass at the column lines and ceilings. The curtain wall frame is outboard of the ribbed metal panel and emphasize the floor lines at each level. The end grain of the extrusions are filled with a large curtainwall and shadowbox glass system. The curtain wall system varies in depth in relation to the ends of the extrusions on the building. On the east and west facades, the depths play an integral role in the dynamic visual texture of the facades as mentioned above. The gaskets between the extrusions are flat metal plates and are seen as a secondary material. The finish and color of the extrusions are a warm light grey tone which are differentiated from the slightly darker gaskets. This differentiation helps amplify and distinguish each of the elements from one another.

At the ground floor, the extrusion material is substituted with a metal plate with a darker finish to distinguish the base of the building from the levels above and from the material of the gasket and extrusion. Tenant space glazing conditions at the ground level that face North, East and West will utilize ultra-clear glass for increased transparency. At the upper portions of the building above the ground floor, the glazing is a standard clear glazing except for the southern façade which utilizes dynamic glazing. The dynamic glass is a self-tinting electrochromic glass that provides shade and glare control. At the mechanical penthouse there are storm louvers on the south facade and a mechanical rooftop screen above. The louvers are horizontally oriented to reinforce the grain of the façade with a finish that matches the ribbed metal panels. Above the penthouse, a mechanical screen steps back from the building edge to conceal its visibility. The mechanical screen utilizes similar cladding and detailing to reflect the architectural expression of the building’s extrusion form.

INTERACTION WITH THE PUBLIC REALM

The landscape around Parcel Q2 at Cambridge Crossing extends the fabric of the neighborhood, while addressing quite different urban conditions on each of the four sides of the building.

The primary façade facing Morgan Avenue and the CX Parcel I park continue the street tree and streetscape elements of the neighborhood with a high deciduous canopy, a generous sidewalk with clear sight lines, and site furnishings. Structural planting soil and an aeration system under the pavement provide healthy conditions for urban street trees to thrive. Areas for gathering and relaxation along the sidewalk are created between trees, and exposed aggregate pavement is used to distinguish the main entrance to signify to pedestrians where to enter the building.

Along Morgan Ave between building Q2 and Q1 a plaza enriches the space created by the enclosure of the two buildings. Brick bands extend from the station plaza into the Q2 plaza which guide green line users into the rest of the Cambridge Crossing neighborhood. Below the building arcade, exposed aggregate pavement creates an outdoor retail seating alcove with moveable tables, chairs, and games. The flexible nature of the seating and program in the plaza allows for seasonal changes and pop-up specialty programs for the businesses in Q2, Q1 or the public. The flowering vines growing up the architecturally rich building façade mirror the climbing vines on the east façade of building Q1 creating a plaza enveloped by green walls.

Along the eastern façade facing Water Street the loading dock and parking garage entry are nestled in between a double row of high deciduous canopy, a generous sidewalk with clear site lines, and site furnishings. The streetscape vernacular of the surrounding streets is continued along Water Street to blend into the overall neighborhood.

The southern façade facing the MBTA drop-off and bus shelters are fitted with vine structures, shrubs and low groundcovers that bring visual seasonal interest for pedestrians, while also framing views to and from the building. The vines structures to the south of the building create a unique identity which distinguishes this threshold of Cambridge Crossing as the entry to the neighborhood from Water Street.
MORGAN AVE.
PARCEL Q2
N. FIRST ST.
WATER ST.
MAY 10, 2022

VERTICAL BREAK IN FACADE

FACADE DIVIDED ALONG MORGAN AVE

PUSH IN AT PLAZA

FACADE DIVIDED ALONG MORGAN AVE

ROOF TOP PUSHED DOWN

MASSING PUSHED BACK

FACADE DIVIDED AT ENTRANCE
MORGAN AVE.
PARCEL Q2
N. FIRST ST.
WATER ST.
MAY 10, 2022

WATER STREET VIEW
(VIADUCT REMOVED)
UPPER MASSING PUSHED BACK TO REDUCE SCALE AND BUILDING SHADOW

MASSING PULLED OUT TO MARK CORNER OF PARK

RECESS VEHICULAR ENTRY

DOUBLE ROW OF TREES MARKS THE PATH TO THE PARK

WELCOMING GREEN LANDSCAPING FACING PEDESTRIANS ENTERING CX + PUBLIC USING THE BUS TERMINAL

MASSING HOLDS THE CORNER
Tint 1 is clear and lets in the most sunlight and warmth. It is the default level.

Tint 2 manages some solar heat, while still remaining clear.

Tint 3 diverts glare and heat while still allowing for daylight.

Tint 4 controls glare and keeps you cool.
CLEAR GLASS
BASIS OF DESIGN - VITRO - SOLARBAN 72 ACUITY

VISIBLE LIGHT TRANSMISSION (VLT) - 67
SOLAR HEAT GAIN COEFFICIENT (SHGC) - 0.28
LOCATION: LEVEL 2-6 NORTH / EAST / WEST
TYPICAL BUILDING CURTAIN WALL

ULTRA CLEAR GLASS
BASIS OF DESIGN - VITRO - SOLARBAN 60 STAPHIRE

VISIBLE LIGHT TRANSMISSION (VLT) - 74
SOLAR HEAT GAIN COEFFICIENT (SHGC) - 0.41
LOCATION: LEVEL 1 NORTH, SOUTH, EAST, WEST
CURTAIN WALL / RETAIL / LOBBY

DYNAMIC GLAZING

VISIBLE LIGHT TRANSMISSION (VLT) - VARIABLE
SOLAR HEAT GAIN COEFFICIENT (SHGC) - VARIABLE
LOCATION: LEVEL 2-5 SOUTH PUNCHED WINDOW
CURTAIN WALL / SOUTH CURTAIN WALL

*COLOR / TINT STAGES VARIES, REFER TO ELECTROCHROMIC GLAZING DIAGRAM (PG. 28)
STAGGERED EXTRUSION DIAGRAM

- Upper massing pushed back to reduce scale and building shadow
- Base massing pushed back to extend courtyard
- Extend public realm
- Upper extrusion marks entry

MORGAN AVE.
PARCEL Q2
N. FIRST ST.
WATER ST.
MAY 10, 2022
GENERAL NOTE

• SEE PAGES 42 - 47 FOR FACADE ARTICULATION DIMENSIONING
GENERAL NOTE

• SEE PAGES 42 - 47 FOR FACADE ARTICULATION DIMENSIONING

*ALL MECHANICAL EQUIPMENT CONCEALED BEHIND MECHANICAL SCREEN WALL

EGRESS STAIR
AIR SOURCE HEAT PUMPS
EXHAUST STACKS
STAIR PRESSURIZATION UNIT
STAIR PRESSURIZATION UNIT

38' - 4"
185' - 6"
52' - 10"
41' - 2"
51' - 8"
ARTICULATION DIMENSIONS - GROUND LEVEL

GENERAL NOTE
• SEE PAGES 53 - 65 FOR FACADE / MATERIALITY / DETAILED ARTICULATION
GENERAL NOTE
• SEE PAGES 53 - 65 FOR FACADE / MATERIALITY / DETAILED ARTICULATION

ARTICULATION DIMENSIONING - LEVEL 2

MAY 10, 2022 43
ARTICULATION DIMENSIONING - LEVEL 3

GENERAL NOTE
• SEE PAGES 53 - 65 FOR FACADE / MATERIALITY / DETAILED ARTICULATION
GENERAL NOTE

• SEE PAGES 53 - 65 FOR FACADE / MATERIALITY / DETAILED ARTICULATION

ARTICULATION DIMENSIONS - LEVEL 5

TENANT AREA

STAIR 1

TENANT ROOF TERRACE

ELEV 1

ELEV 2

ELEV 3

ELEV 4

 tenants an

STAIR 2

TENANT ARE

DIVCOWEST. Cambridge Crossing

MAY 10, 2022 46
ARTICULATION DIMENSIONING - MECHANICAL PENTHOUSE PLAN

GENERAL NOTE
• SEE PAGES 53 - 65 FOR FACADE / MATERIALITY / DETAILED ARTICULATION
MORGAN AVE. PARCEL Q2

N. FIRST ST. WATER ST.

20'-0" 23'-10" 1'-6" 10'-0" 1 5'-6" 1 5'-6" 1 7'-0" 1 3'-1 1"

MAY 10, 2022 48

BUILDING SECTION E-W

- **TENANT AREA**
- **MECHANICAL PENTHOUSE**
- **TOP OF MECHANICAL LEVEL ROOF**
- **STAIR OVERRUN**
- **STAIR PRESSURIZATION AND HEAT PUMPS**
- **TOP OF SCREEN**
- **EXTERNAL MECHANICAL**
- **ELECBIKE PARKING**
- **PARKING LEVEL 2**
- **PARKING LEVEL 1**
- **MECHANICAL**
- **BIKE PARKING**
- **ELECTRICAL UTILITY**
- **GENERATORS AND DUNNAGE BASE**

ALL MECHANICAL EQUIPMENT BELOW MECHANICAL SCREEN

MEAN GRADE 30' 3"

DIVCOWEST. Cambridge Crossing

BUILDDING SECTION E-W
*ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

MEAN GRADE
30'3"
ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

GENERAL NOTE
• REFER TO PAGE 53-55 FOR ENLARGED ELEVATION VIEWS

MEAN GRADE
30'-3"
ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

EAST WEST

MEAN GRADE 30'3"

EAST / WEST ELEVATIONS

GENERAL NOTE
• REFER TO PAGE 53-55 FOR ENLARGED ELEVATION VIEWS
ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

MATERIAL LEGEND

ALUMINUM TEXTURED PANEL
BASIS OF DESIGN - PPG DURANAR
MOONSTONE MICA #UC101668F

ALUMINUM PLATE REVEAL PANEL
BASIS OF DESIGN - PPG DURANAR
MEDIUM GRAY #UC101662F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC103093F

ALUMINUM PANEL
ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

MATERIAL LEGEND

ALUMINUM TEXTURED PANEL
BASIS OF DESIGN - PPG DURANAR
MOONDUST MICA #UC101668F

ALUMINUM PLATE REVEAL PANEL
BASIS OF DESIGN - PPG DURANAR
MEDIUM GRAY #UC102662F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC130935F

ALUMINUM PLATE PANEL
BASIS OF DESIGN - PPG DURANAR
BRONZE #UC130935F

GRANITE BASE
BASIS OF DESIGN - CAMBRIAN
BLACK - HONED

SHADOW BOX
BASIS OF DESIGN - VITRO -
SOLARBAN 72 ACUITY

EXPANDED METAL PANEL
BASIS OF DESIGN - STAINLESS
4" X 2" EXPANDED METAL PANEL
LANDSCAPE VINE STRUCTURE IN FRONT OF PANEL NOT SHOWN FOR MATERIAL CLARITY

GLASS
REFER TO GLAZING TYPE DIAGRAM

GENERAL NOTE
• REFER TO PAGE 62-65 FOR 3D VIEWS OF FACADE ARTICULATION

SOUTH ELEVATION

M E A N G R A D E

PARKING RAMP
FIRE PUMP ROOM
GAS METER ROOM
TENANT
BICYCLE STORAGE
MAIN ELECTRICAL ROOM
TRANSFORMER ROOM

EXPANDED METAL PANEL / VINE STRUCTURE TO BE INSTALLED IN FRONT (NOT SHOWN FOR CLARITY OF BACKUP WALL SYSTEM)

ROOF DRAIN OVERFLOW
SPRINKLER DRAIN
GAS METER ROOM ENTRANCE
FIRE DEPT. CONNECTION
FIRE PUMP ROOM ENTRANCE
GAS METER ROOM ENTRANCE
Hose CONNECTION

CURTAIN WALL
GRANITE BASE
ELECTRICAL ROOM ENTRANCE
ARCHITECTURAL LOUVER

M A Y 1 0 , 2 0 2 2

5 4
ALL MECHANICAL EQUIPMENT CONCEALED BEHIND FACADE

MATERIAL LEGEND

ALUMINUM TEXTURED PANEL
BASES OF DESIGN: PPG DURANAR WORKSHOP AND RUD SCHERER

ALUMINUM PLATE REVEAL PANEL
BASES OF DESIGN: PPG DURANAR MEDIUM GRAY #UC102662F

ALUMINUM PLATE PANEL
BASES OF DESIGN: PPG DURANAR BRONZE #UC1030935F

GRANITE BASE
BASES OF DESIGN: CAMBRIAN BLACK - HONED

GLASS
REFER TO GLAZING TYPE DIAGRAM

SHADOW BOX
BASES OF DESIGN: VITRO SOLARBAN 72 ACUITY

EXPANDED METAL PANEL
BASES OF DESIGN: STAINLESS 4"X2" EXPANDED METAL PANEL
LANDSCAPE VINE STRUCTURE IN FRONT OF PANEL (NOT SHOWN FOR MATERIAL CLARITY)

GENERAL NOTE
• REFER TO PAGE 66-65 FOR 3D VIEWS OF FACADE ARTICULATION

MEAN GRADE
30'3"
GENERAL NOTE
• REFER TO PAGE 29 FOR GLASS TYPE AND PROPERTIES

MAY 10, 2022

DYNAMIC GLAZING
SHADOW BOX
CLEAR GLASS
ULTRA CLEAR GLASS

NORTH ELEVATION

GLAZING TYPES - NORTH ELEVATION
GENERAL NOTE
• REFER TO PAGE 29 FOR GLASS TYPE AND PROPERTIES

DYNAMIC GLAZING
SHADOW BOX
CLEAR GLASS
ULTRA CLEAR GLASS

EAST ELEVATION

WEST ELEVATION

GLAZING TYPES - EAST AND WEST ELEVATION
Facade Materiality - Entry / Lobby

- Aluminum Textured Panel
- Aluminum Plate Reveal Panel
- Low Iron Ultra Clear Glass
- Entrance Canopy
- Glazed Entry Doors

Materials:
- Basis of Design: PPG Duranar
- Moondust Mica #UC101668F
- Bronze #UC130935F
- Cambrian Black - Honed
- Low Iron Ultra Clear Glass
- Medium Gray #UC102662F
- Clear Glass - VITRO - Solabar 72 Acuity
- Ultra Clear Glass - VITRO - Solabar 60 Low Iron Starbrite
- Glazed Entry Doors - Cambrian Black - Honed

General Note:
- Refer to Page 62-65 for 3D Views of Facade Articulation

May 10, 2022
Page 59
ALUMINUM TEXTURED PANEL WRAPS TOP OF EXTRUSION PROFILE

ALUMINUM TEXTURED PANEL WRAPS TOP OF CURTAINWALL

ALUMINUM TEXTURED PANEL WRAPS TOP OF CURTAINWALL

CURTAINWALL (CLEAR GLASS AND SHADOWBOX)

CURTAINWALL (DYNAMIC GLAZING AND SHADOWBOX)

ALUMINUM TEXTURED PANEL

CURTAINWALL (CLEAR GLASS AND SHADOWBOX)

ALUMINUM REVEAL EXTRUSION END PROFILE

ALUMINUM TEXTURED PANEL

CURTAINWALL (DYNAMIC GLAZING AND SHADOWBOX)

ALUMINUM PLATE PANEL - LOUVER

BASIS OF DESIGN - PPG DURANAR SUNSTORMBRONZE #UC1030935F

ALUMINUM REVEAL EXTRUSION END PROFILE

ALUMINUM TEXTURED PANEL

CURTAINWALL (DYNAMIC GLAZING AND SHADOWBOX)

ALUMINUM PLATE PANEL - LOUVER

BASIS OF DESIGN - PPG DURANAR MEDIUM GRAY #UC10302662F

CLEAR GLASS

BASIS OF DESIGN - VITRO - SOLBARAN 72 ACUITY

ALUMINUM TEXTURED PANEL

CURTAINWALL (CLEAR GLASS AND SHADOWBOX)

ALUMINUM REVEAL EXTRUSION END PROFILE

ALUMINUM TEXTURED PANEL

CURTAINWALL (DYNAMIC GLAZING AND SHADOWBOX)

ALUMINUM PLATE PANEL - LOUVER

BASIS OF DESIGN - PPG DURANAR MOONDOUST MICA #UC10301016F

GENERAL NOTE

• REFER TO PAGE 62-65 FOR 3D VIEWS OF FACADE ARTICULATION

MAY 10, 2022 60

FAÇADE MATERIALITY - WEST/SOUTH FACING

DIVCOWEST.

Cambridge Crossing

GENERAL NOTE

• REFER TO PAGE 62-65 FOR 3D VIEWS OF FACADE ARTICULATION
MAY 10, 2022

FACADE MATERIALITY - SOUTH FACADE

- Aluminium Textured Panel
- Storm Louver
- Aluminium Perimeter Trim Profile
- Dynamic Glazing
- Shadow Box
- Aluminium Reveal Trim

GENERAL NOTE
• REFER TO PAGE 62-65 FOR 3D VIEWS OF FACADE ARTICULATION
30% INCREASE IN GASKET DEPTH
GENERAL NOTE
• REFER TO PAGE 59-65 FOR FACADE / MATERIALITY ARTICULATION
• REFER TO FLOOR PLANS FOR HORIZONTAL BREAKS

EXPANDED METAL PANEL / VINE STRUCTURE TO BE INSTALLED IN FRONT (NOT SHOWN FOR CLARITY OF BACKUP WALL SYSTEM)

30% INCREASE IN GASKET DEPTH

MIDDLE

BASE

TOP

GASKET

TEXTURED METAL PANEL

METAL PANEL

TEXTURED METAL PANEL
FIN PROJECTION @ HEAD, JAMBS, SILL

LOUVERS

METAL PANEL

2" WIDE HEAD REVEAL

5/8" WIDE METAL PANEL REVEAL

WINDOW WITH SHADOW BOX

PERIMETER FIN PROFILE

2" WIDE JAMB REVEAL

2" WIDE SILL / METAL PANEL REVEAL

TEXTURED METAL PANEL (DEPTH VARIES WITHIN CORRUGATION)
SUSTAINABILITY GOALS & ACHIEVEMENTS

- System metering
- Decoupled HVAC system
- Efficient air-side heat recovery
- LED Lighting
- Dynamic glazing
- Native Landscape
- Low flow fixtures
- Rain water cistern
- Life-cycle assessment
October 13, 2021

Adam Blood
ZGF Architects LLP
600 14th Street NW, Suite 800
Washington, DC 20005

Via Email: adam.blood@zgf.com

Subject: Community Noise Memo

Dear Adam:

This report presents our review of community noise generated by project mechanical equipment for the proposed new laboratory building at Cambridge Crossing Parcel Q2 in Cambridge, MA. This report is based on the DD progress drawings dated September 23, 2021.

NOISE CRITERIA

CITY OF CAMBRIDGE, MA NOISE ORDINANCE

The City of Cambridge Code of Ordinances, Chapter 8.16: Noise Control Ordinance defines the maximum allowable noise limits generated by project equipment. These noise limits are enforced at adjacent property lines, and are defined in A-weighted sound pressure levels (dBA) and by frequency bands, based on zoning districts. Residential zones (which the project area is within) have the most stringent noise criteria, with maximum limits of 60 dBA during the day (7 AM – 6 PM) and 50 dBA at night (6 PM – 7 AM).

COMMUNITY NOISE METHODOLOGY

We developed a computer model of project mechanical noise using CadnaA (DataKustik GmbH) acoustical modeling software, based on the DD progress drawings and specified mechanical equipment.

Mechanical Equipment in Model

The following mechanical equipment has been proposed for the project and was input into our model:

(4) Air Handling Units: Data based on custom Haakon models. Sound power levels at each AHU OA inlet is reported as 73 dBA by the manufacturer.

(4) Exhaust Air Handling Units: Data based on custom Haakon models. 2 fans per unit. Sound power levels at each EAHU exhaust stack outlet is calculated to be 85 dBA based on the fan and sound attenuator selections.

(1) 3-Cell Cooling Tower: Based on Marley model NC407RCN3 with Ultra Quiet Fans.

(13) Rooftop Heat Pumps: Based on Multistack model ARA035. 8 heat pumps will be provided as part of the base scope. 5 additional heat pumps are included as part of the LEED Platinum alternative configuration. All 13 heat pumps were included in these calculations.

(3) Emergency Generators: Base building and two tenant emergency generators (assumed to be tested during daytime hours in series). Generators are located outdoors and will be provided with exterior sound enclosures rated to achieve a minimum noise reduction of 25 dB at 1 meter.

All generators based on CAT C32DR35 rated for 1000 kW.

COMPUTER MODEL RESULTS

We have estimated the noise levels generated by specified project mechanical equipment at properties surrounding the project site based on the most recent design drawings. Noise levels at the nearest adjacent property lines were estimated to be 53 dBA during the daytime and 47 dBA at night, both meeting the noise criteria. Noise levels at property lines further from the project site are estimated to be even quieter.

CODE COMPLIANCE

All building mechanical equipment will comply with the City of Cambridge noise regulations at all nearby properties as currently specified.

I hope that you will find this information useful and will be pleased to answer any related questions.

Sincerely,

Jay Bliefnick, PhD
Senior Consultant
Direct: 617-499-8072
jbliefnick@acentech.com

cc: Rose Mary Su (Acentech)
Pedestrian Wind Studies

SUMMER - EXISTING CONDITIONS

WINTER - EXISTING CONDITIONS

SUMMER - PROPOSED DESIGN

WINTER - PROPOSED DESIGN

BUILDING ABOVE REMOVED FOR CLARITY OF GRADE LEVEL SENSORS

LEGEND

COMFORT CATEGORIES
- SITTING
- STANDING
- STROLLING
- WALKING
- UNCOMFORTABLE

ENTRANCE LOCATION

MAY 10, 2022 68
SHADOW STUDY: EXISTING CONDITIONS

SUMMER SOLSTICE

EQUINOX

WINTER SOLSTICE
PROPOSED EXTERIOR SIGNAGE LOCATIONS

NORTH ELEVATION

SOUTH ELEVATION

EAST ELEVATION

WEST ELEVATION

SIGNAGE LEGEND
- BUILDING IDENTITY: ADDRESS
- BUILDING IDENTITY: MONUMENT
- RETAIL
- WALL SIGNAGE
 - Signage by future retail tenant
- BLADE SIGNS
 - Signage by future retail tenant
- BLDG. ADDRESS (CFD REQ.)
 - Location TBD
LEED DESIGN NARRATIVE

Green Building Rating System Narrative
Article 22: Green Building Requirements
Design Review Submission: Cambridge Crossing Parcel Q2
May 10, 2022

Introduction

Parcel Q2 is currently registered under the U.S. Green Building Council’s LEED v4 Building Design and Construction (BD+C) Core & Shell program. Select credits will be substituted with v4.1 options, where beneficial to the project. The project is anticipated to achieve LEED Gold Certification. Currently, Parcel Q2 is pursuing a combined 68 points, putting the project over the minimum 60 points required for LEED Gold.

The LEED Identification Number is 1000145807. Design Review with the USGBC will likely occur in late fall of 2022. Construction Review will likely occur in summer of 2025, after construction is complete.

LEED v4 BD+C Core & Shell Summary

<table>
<thead>
<tr>
<th>Point Category</th>
<th>Points (v4)</th>
<th>Points (v4.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrative Process</td>
<td>1 point</td>
<td>1 point</td>
</tr>
<tr>
<td>Location & Transportation</td>
<td>16 points</td>
<td></td>
</tr>
<tr>
<td>Sustainable Sites</td>
<td>9 points</td>
<td></td>
</tr>
<tr>
<td>Water Efficiency</td>
<td>7 points</td>
<td></td>
</tr>
<tr>
<td>Energy & Atmosphere</td>
<td>16 points</td>
<td></td>
</tr>
<tr>
<td>Materials & Resources</td>
<td>4 points</td>
<td></td>
</tr>
<tr>
<td>Indoor Environmental Quality</td>
<td>6 points</td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td>6 points</td>
<td></td>
</tr>
<tr>
<td>Regional Priority</td>
<td>3 points</td>
<td></td>
</tr>
<tr>
<td>Sum total</td>
<td>68 points</td>
<td></td>
</tr>
</tbody>
</table>

LEED Certification Narrative

Integrative Process
Throughout the early design phases, the team has studied site conditions, basic envelope attributes, energy-related systems, and water-related systems to identify potential synergies across disciplines and building systems. These studies are being used to inform the Owner’s Project Requirements (OPR) and the Basis of Design (BOD) documents.

Location & Transportation
Sensitive Land Protection: 2 points likely

Parcel Q2 is located on previously developed land.

High Priority Site: 3 points likely
The project is located on a brownfield with soil and groundwater contamination. Remediation will be performed to meet the requirements of the Authority Having Jurisdiction.

v4.1 Surrounding Density and Diverse Uses: 4 points likely, 2 points maybe
Parcel Q2 is in a very dense, mixed-use urban area. The site is within a previously developed area, as part of the Cambridge Crossing development project. The project’s Walk Score is 84, which confirms 4 points under the v4.1 credit substitution.

v4.1 Access to Quality Transit: 4 points likely, 2 points maybe
The project entries are located within ¼ mile of the future Lechmere MBTA Station. Additionally, the bus and shuttle routes that serve the station confirms 4 points under the v4.1 credit substitution. The impact of extension to the light rail system’s Green line will be evaluated for additional points.

Bicycle Facilities: 1 point likely
The building’s entry is located within 200 yards of a bicycle network that connects the project to over 10 diverse uses. The design provides 28 short-term bicycle storage (above the minimum requirement for 2.5% of all peak visitors and 50 long-term bicycle storage (above the minimum requirement for 5% of all regular building occupants). On-site showers with changing facilities are included in the design and within the maximum allowable distance required by LEED. Additionally, all bicycle storage provided is within the maximum allowable distance.

v4.1 Reduced Parking Footprint: 1 point likely
Under a v4.1 option, provided parking is required to not exceed code minimums and must meet a 30% reduction from the baseline ratio. The current design meets the credit requirements.

v4.1 Green Vehicles: 1 point likely
Following the v4.1 option, no parking spaces are required to be designated for Green Vehicles. However, with this option, Electric Vehicle Supply Equipment (EVSE) is to be provided for 5% of the total parking spaces. The project greatly exceeds this minimum requirement by providing 37 spaces with EVSE out of 145 total parking spaces.

Sustainable Sites

Prereq. Construction Activity Pollution Prevention
An erosion and sedimentation control plan will be implemented for the project. This plan will reduce pollution from construction activities by controlling soil erosion, waterway sedimentation, and airborne dust.

Site Assessment: 1 point likely
A site assessment will be completed including topography, hydrology, climate, vegetation, soils, human use, and human health effects. This assessment will be used to inform the project’s design.

Site Development – Protect or Restore Habitat: 1 point maybe, 1 point no
This credit is dependent on if financial support for a nationally or locally recognized land trust or conservation organization will be included within the project budget.

Open Space: 1 point likely
The project design includes a minimum 30% open space, with 25% of that space as vegetated area. This is considering the project’s limit of work as the LEED Boundary (The Station Plaza West is not included within the LEED boundary).

v4.1 Rainwater Management: 3 points likely
The project can manage stormwater runoff on site for 90th percentile of rainfall. A cistern is provided in the project design to store rainwater for use by the cooling tower.

Heat Island Reduction: 2 points likely
Both nonroof site and roof strategies will be utilized to reduce heat island effect. Since the roof is low slope, the initial SRI value must be 82 minimum. Initial calculations show compliance based on the SRI value of site pavement and roof material. If for some reason the project is unable to meet the requirements for two points, the project can earn one point since over 75% of parking will be undercover.

Light Pollution Reduction: 1 point likely
The project design will meet uplight and light trespass requirements, using the backlight-uplight-glare (BUG) method.

Tenant Design and Construction Guidelines: 1 point likely
The project team will equip tenants with education related to implementing sustainable design and construction features in any tenant improvement projects.

Water Efficiency
Prereq. Outdoor Water Use Reduction
The project will reduce its landscape water requirement by at least 30% from the calculated baseline for the site’s peak watering month. These reductions will be achieved by selecting low-water/native plant species and by installing efficient irrigation systems.

Prereq. Indoor Water Use Reduction
For fixtures and fittings, the project design will achieve above the 20% minimum water consumption reduction from baseline. All appliances, equipment, and processes will meet the minimum requirements per LEED. All newly installed toilets, urinals, private lavatory faucets, and showerheads will be WaterSense labeled.

Prereq. Building-Level Water Metering
Permanent water meters will measure the total potable water use for the building and associated site. Monthly and annual data will be shared with USGBC for the five-year period required by LEED.

Prereq. Water Use Reduction, Reuse, or Recycling
Points will be tracked under Indoor Water Use Reduction to reflect the Whole Project Water Use calculation path (Pilot Credit)

The project design reduces indoor water consumption by 26% using lower flow and flush fixtures. Combined with the Outdoor Water Use reduction and rainwater reuse in the cooling tower, a 46% total water use reduction is achieved. This reduction translates to 6 points under the Pilot Credit “Whole Project Water Use”.

Prereq. Water Metering
The project team will select two of the following water subsystems to meter: irrigation, indoor plumbing fixtures and fittings, domestic hot water, boiler, reclaimed water, or other process water.

Energy & Atmosphere
Prereq. Fundamental Commissioning and Verification
A third-party Commissioning Agent will be responsible for reviewing the Design and Construction Documents, Owner’s Project Requirements and Basis of Design documents. Additionally, the CxA will develop and implement a Cx plan, confirm incorporation of Cx requirements into the construction documents, develop construction checklists, develop a system test procedure, verify system test execution, maintain an issues and benefits log throughout the Cx process, prepare a final Cx process report, document all findings and recommendations, and issue reports directly to the owner throughout the process.

Prereq. Minimum Energy Performance
The project must demonstrate an improvement of 2% for core and shell projects in the proposed building performance rating compared to the baseline. The project is currently showing a 21% reduction. An energy model (calculated according to the Building Performance Method in ASHRAE Appendix G) will analyze how the efficient MEP and building envelope systems help achieve energy reduction.
Prereq. Building-Level Energy Metering
Permanent building energy meters will measure the total energy use for the building. Monthly and annual data will be shared with USGBC for the five-year period required by LEED.

Prereq. Fundamental Refrigerant Management
The project will not use chlorofluorocarbon (CFC)-based refrigerants in new heating, ventilating, air-conditioning, and refrigeration (HVAC&R) systems.

Enhanced Commissioning: 5 points likely, 1 point maybe
Enhanced Commissioning and Building Envelope Commissioning are to be included in the project scope. Inclusion of Monitoring-based Commissioning is to be determined in subsequent project phases.

Optimize Energy Performance: 10 points likely, 8 points maybe
The project’s LEED Gold energy target will be a 21 - 26% reduction, corresponding with 10-12 Likely points. Its LEED Platinum energy target will be 26 - 32% reduction, corresponding with 12-14 Likely points. Whole building energy simulations are being performed in each design phase to analyze reduction strategies.

Materials & Resources
Prereq. Storage and Collection of Recyclables
The project will dedicate areas for the collection and storage of recyclable materials for the entire building. Recyclable materials to be collected will include mixed paper, corrugated cardboard, glass, plastics, and metals. The project team will also identify two of the following to be safely collected, stored, and disposed of: batteries, mercury-containing lamps, and electronic waste.

Prereq. Construction and Demolition Waste Management Planning
The Contractor will develop and implement a construction and demolition waste management plan. This plan will identify at least five materials for diversion.

v4.1 Building Life-Cycle Impact Reduction: 1 point likely, 3 points maybe, 2 points no
Under v4.3 option 2, the project scope will include a “whole-building life-cycle assessment” to understand the ecological impact of the design and construction. The maybe points are being held for possible reduction in global warming potential (embodied carbon) and other impact areas. The design and construction team will evaluate what to target and what is achievable.

v4.1 Building Product Disclosure and Optimization – Environmental Product Declarations: 1 point likely, 1 point no
The team will track and include at least 10 environmental product declarations (EPDs) for permanently installed products on the project.

v4.1 Building Product Disclosure and Optimization – Sourcing of Raw Materials: 2 points maybe
The team is evaluating the feasibility of including recycled content in the steel used for the project and whether the steel will be supplied within 100 miles.

v4.1 Building Product Disclosure and Optimization – Material Ingredients: 1 point likely, 1 point no
The team will track and include at least 10 health product declarations (HPDs) for permanently installed products on the project.

v4.1 Construction and Demolition Waste Management: 1 point likely, 1 point maybe
The project will divert 50% of construction and demolition waste and target generating less than 15 pounds per square foot of waste.

Indoor Environmental Quality
Prereq. Minimum Indoor Air Quality Performance
The project will meet the minimum requirements of ASHRAE Standard 62.1–2010, Sections 4–7 for mechanically ventilated spaces and meet the requirements of ASHRAE Standard 62.1–2010, Section 4 for naturally ventilated spaces.

Prereq. Environmental Tobacco Smoke Control
The project will prohibit smoking inside the building. Any smoking outside the building will only occur in designated smoking areas located at least 25 feet from all entries.
outdoor air intakes, and operable windows. To indicate the no-smoking policy, signage will be posted within 10 feet of all building entrances.

Enhanced Indoor Air Quality Strategies: 2 points likely

The project will include permanent entryway systems at least 10 feet long in the primary direction of travel at regularly used exterior entrances. Spaces where hazardous gases or chemicals may be present or used will be sufficiently exhausted. Each ventilation system that supplies outdoor air to occupied spaces will have particle filters of MERV 13 or higher. Additionally, outside air ventilation rates will be 30% above ASHRAE 62.1-2010.

Enhanced Indoor Air Quality Strategies: 2 points likely

The project will include permanent entryway systems at least 10 feet long in the primary direction of travel at regularly used exterior entrances. Spaces where hazardous gases or chemicals may be present or used will be sufficiently exhausted. Each ventilation system that supplies outdoor air to occupied spaces will have particle filters of MERV 13 or higher. Additionally, outside air ventilation rates will be 30% above ASHRAE 62.1-2010.

Low-Emitting Materials: 3 points likely

The design team will specify product categories that meet the compliant emissions and content standards identified by LEED. The four targeted categories are: flooring, paint, insulation, and ceilings.

Construction Indoor Air Quality Management Plan: 1 point likely

A construction IAQ management plan will be implemented for construction and preoccupancy phases. The plan will be developed to follow LEED requirements.

Daylight: 3 points no

The project will not include scope for a daylight model.

Quality Views: 1 point maybe

The project design would need to identify a direct line of sight to the outdoors via vision glazing for 75% of all regularly occupied floor area. Additionally, 75% of all regularly occupied floor area would need to have at least two of the required types of views. A tenant fit-out plan is required to demonstrate compliance.

Innovation

Innovation Credits: 5 points likely

The team has identified the following credits for pursuit:

- **Innovation: Green Building Education (signage and information on display throughout the building)**
- **Innovation: Occupant Comfort Survey (survey building occupants every 2 years)**
- **Pilot Credit: Social Equity within the Project Team (The project’s architecture firm has their JUST Label)**
- **Exemplary Performance: Track and include 20 EPDs (exceeds minimum credit requirements)**
- **Exemplary Performance: Track and include 20 HPDs (exceeds minimum credit requirements)**

LEED Accredited Professional: 1 point yes

There are many LEED Accredited Professionals involved with the Parcel Q2 project, but the LEED AP will likely be the Green Building Professional (required under Cambridge’s Zoning Code Article 22).

Regional Priority

The following Regional Priority credits are identified, based on the project’s location:

- **High Priority Site: 1 point likely**
 - The threshold to achieve this credit is 2 points, which the project is on track to meet.

- **Optimize Energy Performance: 1 point likely**
 - The threshold to achieve this credit is 8 points, which the project is on track to meet.

- **Rainwater Management: 1 point likely**
 - The threshold to achieve this credit is 2 points, which the project is on track to meet.

- **Building Life-cycle Impact Reduction, Indoor Water Use Reduction, or Renewable Energy Production: 1 point maybe**
 - The following credits do not currently have enough "likely" points to meet the minimum threshold required:
 - Building Life-cycle Impact Reduction threshold: 2 points
 - Indoor Water Use Reduction threshold: 4 points
 - The following credit is currently “no” in the LEED checklist:
 - Renewable Energy Production threshold: 2 points

LEED v4 for BD+C: Core and Shell
Project Checklist

Project Name: Cambridge Crossing Parcel Q2
Date: 05/10/22

Materials and Resources

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Storage and Collection of Recyclables</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>Construction and Demolition Waste Management Planning</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Building Life-Cycle Impact Reduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Building Product Disclosure and Optimization - Environmental Product Declarations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Building Product Disclosure and Optimization - Sourcing of Raw Materials</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Building Product Disclosure and Optimization - Material Ingredients</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Construction and Demolition Waste Management</td>
<td></td>
</tr>
</tbody>
</table>

Sustainable Sites

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Assessment</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>Site Development - Protect or Restore Habitat</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Open Space</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rainwater Management</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Heat Island Reduction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Light Pollution Reduction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tenant Design and Construction Guidelines</td>
<td></td>
</tr>
</tbody>
</table>

Water Efficiency

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outdoor Water Use Reduction</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>Indoor Water Use Reduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Building-Level Water Metering</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Outdoor Water Use Reduction</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Indoor Water Use Reduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cooling Tower Water Use</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Water Metering</td>
<td></td>
</tr>
</tbody>
</table>

Energy and Atmosphere

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Fundamental Commissioning and Verification</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Minimum Energy Performance</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Building-Level Energy Metering</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Fundamental Refrigerant Management</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Enhanced Commissioning</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Optimize Energy Performance</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Advanced Energy Metering</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Demand Response</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Renewable Energy Production</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Enhanced Refrigerant Management</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Green Power and Carbon Offsets</td>
<td></td>
</tr>
</tbody>
</table>