

SOMA BUILDING 3 DESIGN REVIEW PLANNING BOARD SUBMITTAL JUNE 21, 2017

TABLE OF CONTENTS

- What We Heard Planning Board Themes & Response
- Facade Concept
- Design Evolution Relationship to Main Street
- Design Evolution Relationship to Open Space & Side Streets
- Facade Details and Materials
- Ground Floor / Lower Levels Detailing

Building Plans Building Sections Changes to 238 Main St Elevation

1. What We Heard **Planning Board Themes & Response**

WHAT WE HEARD

Design should be reflective of Kendall Square and MIT

• FAÇADE DETAILS

Differentiate between facades; respond to unique site conditions

Explore alternative expressions of louvers

Study fins distribution and depth

Ensure balance of glass reflectivity

Examine relationship of building to clock tower and other buildings

Strengthen design relationship of building/ cantilever to landscape.

DESIGN EVOLUTION

Advanced cantilever art process.

Explored mathematical and scientific expressions in building design.

Developed fin pattern in the spirit of the Fibonacci sequence.

• FAÇADE DETAILS

Worked on mechanical redesign with engineers to remove louvers completely from north elevation.

Developed strategy of fin density to more gracefully blend louver zone with façade.

Staggered fins to create a more elegant, light, and animated appearance.

Reduced fin density where less sun is received or shading is provided by adjacent building.

Created four distinct façade designs by considering unique conditions of each side.

Examined colors, tonality and reflectivity to complement and celebrate existing and other new buildings.

Evaluated façade detail effect both close up and far

Evolved the landscape design to better coordinate with the building entrances and cantilever.

EFFICIENT FLOOR PLATE

ROTATE UPPER MASS

EXTEND INFINITE CORRIDOR

SOMA BUILDING 3 JUNE 22, 2017

SOMA BUILDING 3 JUNE 22, 2017

2. Facade Concept

As we explored how to create a meaningful and beautiful pattern of fins we explored several mathematical equations and codes that could inform their arrangement. The pattern that we have incorporated is known as the Fibonacci Sequence.

The Fibonacci Sequence was developed in the 11th century and is built upon the golden section, a proportional system used in the classical Roman era. Interestingly, evidence of this proportioning system can be found in the entry to MIT at 77 Massachusetts Avenue as well as the façade of MIT's Great Dome in Killian Court. The Fibonacci Sequence builds off the golden section and describes a gradient pattern that goes from greater density to lesser density as the number sequence progresses.

On Building 3 we are using the Fibonacci Sequence to locate the vertical fins on the building, beginning with the densest pattern on the South façade and then transitioning to the lightest at the north ends of the East and West facades.

As the pattern emerged, we were also pleased to see that the overall massing of the building form is proportioned very closely to the ratios of the Golden Section as well.

The following slides share our findings and the methodology we have used to create these rational yet beautiful patterns on the building.

SOMA BUILDING 3 JUNE 22, 2017

Fibonacci Sequence

The façade of the building has been enriched by a pattern of vertical fins that are most dense on the South façade and least dense on the North façade in response to two very different solar conditions. The East and West facades respond to the morning and afternoon sun with a density of fins that gradually transitions between the more dense

THE FIBON

The <u>Fibonacci Sequence</u> is a simple mathematical equation that is found in nature as well as in a classical proportioning system of architecture refered to as the <u>Golden Section</u>.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144

THE FIBONACCI SEQUENCE & THE GOLDEN

PREVIOUS CONCEPT

All facades are the same.

ALTERNATE CONCEPT

Facades change based on orientation (North, South, etc.)

Facades change based on orientation, and transition gradually from one facade to another to emphasise singularity of form

PROPOSED CONCEPT

PROPOSED CONCEPT

- Fin pattern on facade transitions from most dense at south to least dense at north
- Dense fins at top of penthouse visually blend louver zone with facade below
- Fin density is reduced where shading is provided by adjacent buildings and on north side which receives least sun

EAST ELEVATION

17

SOMA BUILDING 3 JUNE 22, 2017

SOMA BUILDING 3 JUNE 22, 2017

18

FACADE - PATTERN GENERATION STUDIES

MORSE CODE

		INTERNATIONAL MORSE CODE					
А	• ==	Ν		1	•====		
в		0		2	••====		
С		Р	• == •	3	•••		
D		Q		4	••••		
Е	•	R	• = •	5			
F	••••••	S		6			
G	•	т	-	7			
н		U	••	8			
I.	••	V	•••	9			
J	• = = =	W	• == ==	0			
к	•	х					
L	• • • •	Y					
м		Z					

PRIME NUMBER SPIRAL

401 400 399 398 397 3	196 395 394 3	93 392 391	886 229 388	387 386 383	384 362 382 381
402 325 324 323 322 3	21 320 319 3	18 317 316	315 314 313	312 310 310	086 702 866 606
403 326 257 256 255 2	254 253 252	61 250 249	248 247 246	245 244 243	242 241 306 379
404 327 258 197 196 1	195 194 192 1	92 191 190	189 188 187	186 185 184	183 240 305 378
405 328 259 198 145 1	144 143 142 1	41 140 109	138 200 136	135 134 133	182 225 304 377
406 329 260 190 146	01 100 99	98 97 96	95 94 93	92 91 132	181 238 303 376
407 330 261 200 147 1	102 65 64	61 62 31	60 58 58	37 90 13	180 237 302 375
408 262 201 148	66 27	36 35 34	33 32 21	56 89 130	236 301 374
409 332 363 202 149 1	104 67 38	17 16 15	14 12 30	55 88 129	178 233 300 202
410 333 264 203 150 1	105 68 39	18 5 4	1 12 29	54 87 128	177 234 299 372
411 334 265 204	106 69 40	6 1	28 00 28	86 18	176 228 298 371
412 335 266 205 152	09 70 00	20 7 8	9 10 27	52 85 126	175 232 297 370
413 336 267 206 153 1	42	11 22 223	24 25 26	51 84 123	174 231 296 369
414 268 207 154	00 72 88	44 45 46	48 49	50 188 124	230 295 368
415 338 889 208 155 1	10 22 74	75 76 77	78 241 80	81 82 123	172 202 794 250
416 339 270 209 156 1	11 112 112 1	14 115 116	117 118 119	120 121 122	171 228 802 366
417 240 200 210 200 1	158 159 160 1	61 162 100	164 165 166	158 158 153	170 200 292 265
A18, 341, 272 A10, 212, 3	113 214 215 2	16 317 218	718 220 221	777 100 100	225 226 201 264
10 341 212 CM 212 -	76 000 278 2	10 280 000	282 282 284	385 386 383	CRE 101 011 011 011
AND 342 243 214 214 214	210 -	150 301 353	100 and ans	356 357 356	Cac (ac nac 030)
420 343 344 345 340	176 APT APR A	00 400 202	473 224 474	405 402 403	179 KND AAD AAT
	+20 427 420 4	10.2 430 ESB	434 EEE 434	433 430 437	4.50 6556 440 441

y ×

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

FIBONACCI SEQUENCE

SOUTH ELEVATION WITH GOLDEN **SECTION OVERLAY**

WEST ELEVATION WITH GOLDEN **SECTION OVERLAY**

MIT KILLIAN COURT FACADE

MIT 77 MASSACHUSETTS AVENUE

SOMA BUILDING 3 JUNE 22, 2017

PROPOSED CONCEPT - SOUTH FACADE

On the South facade, the pattern begins with fins at every mullion, and then fins are subtracted based on the numbers of the Fibonacci Sequence.

FIBONACCI SEQUENCE

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144

The mathematical formula that generates the Fibonacci Sequence creates a specific numeric progression and form.

By varying the starting number in the sequence, the same proportional relationship is created at a different scale:

0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110 0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165 0, 4, 4, 8, 12, 20, 32, 52, 84, 136, 220 0, 5, 5, 10, 15, 25, 40, 65, 105, 170 0, 6, 6, 12, 18, 30, 48, 78, 126, 204 0, 7, 7, 14, 21, 35, 56, 91, 147, 238

The sequence of numbers generated by this equation was used to create the pattern of fins on the North and South facades.

PROPOSED CONCEPT - NORTH FACADE

25

.5

2

3

4

5

6

7

The North facade inverts the approach of the South- the pattern begins with no fins at every mullion, and then fins are added based on the numbers of the Fibonacci Sequence.

3. Design Evolution Relationship to Main Street

REMOVED ALL VENTILATION LOUVERS AT NORTH SIDE OF PENTHOUSE TO PRODUCE A UNIFIED, NORTH FACADE WITH A VERTICAL PROPORTION

INTRODUCED GRADIENT OF VERTICAL FIN DENSITY IN A STAGGERED PATTERN, RESULTING IN MORE ANIMATION OF THE FACADE

PERSPECTIVE: POINT PARK LOOKING SOUTHWEST, LATE AFTERNOON

REMOVED ALL VENTILATION LOUVERS AT NORTH SIDE OF PENTHOUSE TO PRODUCE A UNIFIED, NORTH

MIT KENDALL SQUARE SoMa PROJECT

PERSPECTIVE: POINT PARK LOOKING SOUTHWEST, LATE AFTERNOON

SOMA BUILDING 3 JUNE 22, 2017

PERSPECTIVE: POINT PARK LOOKING SOUTHWEST, LATE AFTERNOON

PERSPECTIVE: FROM MBTA OUTBOUND LOOKING EAST, LATE AFTERNOON SOMA BUILDING 3 JUNE 22, 2017

SOMA BUILDING 3 JUNE 22, 2017

PERSPECTIVE: FROM LONGFELLOW BRIDGE LOOKING WEST WITHOUT BUILDING 2

PERSPECTIVE: FROM LONGFELLOW BRIDGE LOOKING WEST WITH BUILDING 2

SOMA BUILDING 3 JUNE 22, 2017

4. Design Evolution Relationship to Open Space & Side Streets

PERSPECTIVE: INFINITE CORRIDOR LOOKING EAST MID-AFTERNOON SOMA BUILDING 3 JUNE 22, 2017

* NOTE: Some trees in landscape have been removed to increase visibility of building facade.

32

SOMA BUILDING 3 JUNE 22, 2017 PERSPECTIVE: FROM THE OPEN SPACE LOOKING NORTHEAST MID AFTERNOON

PERSPECTIVE: FROM THE OPEN SPACE LOOKING NORTHEAST **MID AFTERNOON**

* NOTE: Some trees in landscape have been removed to increase visibility of building facade.

SOMA BUILDING 3 JUNE 22, 2017

* NOTE: Some trees in landscape have been removed to increase visibility of building facade.

SOMA BUILDING 3 JUNE 22, 2017

VIEW FROM SOUTH HAYWARD STREET EARLY AFTERNOON

PERSPECTIVE: INFINITE CORRIDOR FROM E53 LOOKING WEST LATE MORNING

SOMA BUILDING 3 JUNE 22, 2017

PUBLIC ART PROGRAM : EXAMPLE OF ART

PUBLIC ART PROGRAM : EXAMPLE OF ART

SARAH MORRIS

SOMA BUILDING 3 JUNE 22, 2017

38

PERSPECTIVE: VIEW OF SOUTH ENTRY EARLY AFTERNOON

RAISED SEATING ELEMENT ADDED UNDER CANTILEVER

INFINITE CORRIDOR SHIFTED SOUTH TO CREATE A MORE GENEROUS LAYER OF SPACE FOR SEATING ADJACENT TO BUILDINGS

SOMA BUILDING 3 JUNE 22, 2017

REFINED LANDSCAPE PLAN AT SOUTH SIDE -

WITH TREES

LINE OF CANTILEVER

REFINED LANDSCAPE PLAN AT SOUTH SIDE -

WITHOUT TREES

SOMA BUILDING 3 JUNE 22, 2017

VIEW LOOKING SOUTH DOWN WADSWORTH STREET MID MORNING

VIEW LOOKING SOUTH DOWN HAYWARD STREET MIDDAY SOMA BUILDING 3 JUNE 22, 2017

