

Climate Change & Urban Heat in Cambridge

City of Cambridge June 26, 2019

Climate Resilience Zoning Task Force

Increasing Heat: Warmer Averages, Greater Extremes, More Heat Waves

Urban Heat Island Effect Magnifies Ambient Temperature

- Darker impervious surfaces pavement & roofs -absorb heat
- Areas with large amounts of impervious surface and lacking tree canopy tend to be heat islands

By 2030, the number of days above 90° F could triple

- Stress on human health
- Stress on infrastructure

How Can Municipalities Plan for Greater Resiliency to High Temperatures? Water

Objectives:

- 1. Identify vulnerabilities to increasing heat if no changes made
- 2. Understand better how Cambridge's urban form influences temperatures and how it could be modified

(Baseline)

		TEMPERATURE (°F)															
		80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
Realative Humidity (%)	40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
	45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
	50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
	55	81	84	86	89	93	97	101	106	112	117	124	130	137			
	60	82	84	88	91	95	100	105	110	116	123	129	137				
	65	82	85	89	93	98	103	108	114	121	128	136					
	70	83	86	90	95	100	105	112	119	126	134	_					
	75	84	88	92	97	103	109	116	124	132							
	80	84	89	94	100	106	113	121	129								
	85	85	90	96	102	110	117	126	135								
	90	86	91	98	105	113	122	131									
	95	86	93	100	108	117	127										
	100	87	95	103	112	121	132										

NOAA National Weather Service: Heat Index

Translating Heat Index to Human Health Impacts

Caution	Fatigue					
Extreme Caution	Heat exhaustion possible					
Danger	Heat exhaustion likely; heat stroke possible					
Extreme Danger	Heat stroke likely (death or permanent damage)					

Humidity Exacerbates Heat Impact on Human Health

Ambient Air Temperatures with UHI Effect - 83°F day

Colors keyed to NOAA Heat Index

Ambient Air Temperature with UHI Effect – 90°F Day

Ambient Air Temperature with UHI Effect - 100°F Day

Ambient Air Temperature with UHI Effect – 90°F Day -*Redux*

Heat Index Temperature with UHI Effect – 90°F with relative humidity 50 – 55%

Energy Use in Buildings Shifting – More Cooling, Less Heating

*Figure 4 – Historic and projected annual heating and cooling degree days*²⁴

Warming Trend Is Already Affecting Municipal Building Energy Use

Weather Normalized Energy Usage for BEUDO buildings

DEGREE DAYS	2017 Observed Value	2018 Observed Value	% Difference	Normal Value	Normal is the average			
HEATING TOTAL	5,310	5,391	2%	5,681	for 1981-2010			
COOLING TOTAL	880	1,132	29%	747				

Number of heating degree days was very similar in calendar years 2017 and 2018. Number of cooling degree days saw a 29% increase in 2018.

Total for BEUDO buildings Weather Normalized Site Energy Use (kBtu) increased 4%

NOAA data also shows for Boston area that Cooling Degree Days have increased by 1.5 times since 2000 compared to to 1970-2000 period.

Indoor Temperatures During a Summer Blackout

Indoor Temperatures During a Winter Blackout

Typical Building

High-Performing Building

Cooling Impact Relative to Streetscape (90 degree day)

Preparing for and Adapting to Increasing Heat Vulnerability

Resilience Strategies

- A A Prepared Community: Strategies to strengthen community, social, and economic resilience.
- **B** Adapted Buildings: Strategies to protect buildings against projected climate change impacts.
- C Resilient Infrastructure: Strategies to ensure continued service or a speedy recovery from community-wide infrastructure systems.
- (D) Resilient ecosystems: An enhanced living environment integrating air quality, waterways, green infrastructure, and the urban forest as a system resilient to climate impacts.

Resiliency Planning Objectives for Heat

Other Factors Contributing to UHI Effects

Relating Ambient Temperature and Percent Impervious Area

Green Infrastructure Effectively Reduces Impervious Area

Rain Garden at Stata Center, MIT

Green Infrastructure Effectively Reduces Impervious Area

Existing Impervious Surface by Catchment

Proposed Impervious Surface with Green Infrastructure at MEP

Cooling Benefits of Increased Green Best Management Practices (BMP)

Existing Impervious Surface by Catchment

Cooling Benefit is determined by the *difference* in impervious area %

Impact of Green BMPs on UHI

Impact of White Roofs on UHI

Max. temp reduction by 4.5°F (Average temperature decrease 2.4°F)

What are Some Preliminary Findings?

- Green BMPs may reduce ambient temperature by 0.1°F 6°F, as a function of reduction of impervious areas, with an average temperature decrease of 1.7°F (area-weighted average across all catchments).
- White roofs yielded a 2.4°F cooling benefit with a 50% level of implementation across existing buildings (area weighted average)
- White roofs are more effective in cooling, but do not have the additional benefits of water quality improvement and flood reduction for smaller storms.
- Efficient building envelopes keep inside temperatures in a safe range during power outages.
- A 1% tree canopy increase relates to 0.12°F of cooling. For street trees, approximately an average of 1°F cooling is achieved per tree per 100 ft, with a range between 0.15-6.2°F.

What can be done?

More trees

COOLING STRATEGIES: To what extent can localized high temperatures be reduced?

Draft Figure: Based on Ambient Air Temperature on a 90 Degree Day

Cooling from Green Roofs + White Roofs:1.7 °FCooling From New Tree Canopy:0.3 ° F

27

What would be gained?

Projected Benefits:

About **9,000** MMBtu in energy savings, equivalent to the annual electricity usage of approximately **375** households

Up to **2°F** reduction in ambient air temperature

Green Infrastructure

Idea for change

#2 Super-Resilient Urban Blocks

To implement maximum resiliency strategies in one defined area.

It will help reducing flooding and urban heat island and increase energy resiliency.

What would be gained in the residential block?

Projected Benefits:

Up to **2 °F** reduction in ambient air temperature

3,070-3,780 MMBtu in

energy savings if 85% of the buildings in the block are improved (in terms of total area), equivalent to the electricity usage from approximately **145 households**

What would be gained in the mixed-use block? Projected Benefits:

Up to **6 °F** reduction in ambient air temperature

11,320-14,430 MMBtu

in energy savings if 88% of the buildings in the block (in terms of total area), equivalent to the electricity usage from approximately **545 households**

Implement green roofs for stormwater detention and reduction of urban heat island

Implement blue/white roofs

urban heat island reduction

for stormwater detention and

Adapted Buildings: HRI Concord Highlands Affordable Housing

- High performance building envelope and cool roof (project will be Passive House certified under the PHIUS+ 2015 system); can stay in 55-85° F range for 4 days passively.
- 2. Heat recovery ventilation system
- 3. VRF heat pump and efficient central hot water system
- 4. 83 kW Solar PV on roof Sub-metered utilities and separate sub-panel for life safety loads (above flood elevation)
- 5. Sub-metered utilities and separate sub-panel for life safety loads (above flood elevation)
- 6. Building energy management
- 7. Top floor community room and residential units elevated above flood elevation

Peformance Standards: Examples

- Green Factor: Seattle
- Green Area Ratio: Washington DC
- LEED Resilience Pilot Credit for Passive Thermal Resilience
- Solar Reflectance Index

Prescriptive Standards: Examples

- Minimum landscape requirements
- Maximum impervious cover
- Passive House building envelope
- Community space sheltering requirement
- Back up power/energy storage
- Cool roof requirement

Thank you!