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Increasing Heat: Warmer Averages, Greater Extremes, More Heat

Waves
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*Summer is considered to be the 91 days of June through August

By 2030, the number of days

above 90° F could triple

e Stress on human health

e Stress on infrastructure

Urban Heat Island Effect Magnifies Ambient Temperature

* Darker impervious surfaces — pavement & roofs --
absorb heat

* Areas with large amounts of impervious surface and
lacking tree canopy tend to be heat islands
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How Can Municipalities Plan for Greater Resiliency to
High Temperatures? e

Objectives:
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Translating
Heat Index to

Human
Health
Impacts

Realative Humidity (%)

NOAA National Weather Service: Heat Index
TEMPERATURE (°F)
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Caution Fatigue
Extreme Caution  Heat exhaustion possible

Danger Heat exhaustion likely; heat stroke possible
Extreme Danger Heat stroke likely (death or permanent damage)

Humidity Exacerbates Heat Impact on Human Health



Colors keyed to
NOAA Heat Index

Ambient Air Temperatures with UHI Effect - 83°F day
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Ambient air temperature variability when average ambient
temperature is 83°F day (8/30/2010 at 11:15am) |
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Ambient Air Temperature with UHI Effect — 90°F Day
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Ambient Air Temperature with UHI Effect - 100°F Day
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Ambient Air Temperature with UHI Effect — 90°F Day -Redux

5 Ambient air temperature variability on a day when
average ambient air temperature is 90°F
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Heat Index Temperature with UHI Effect — 90°F with relative humidity 50 — 55%
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“Feels-like” temperature variability on a day when heat index is 96 °F

(90°F with relative humidity 50 - 55%)
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Energy Use in Buildings Shifting — More Cooling, Less Heating
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Figure 4 — Historic and projected annual heating and cooling degree days?*
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Warming Trend Is Already Affecting Municipal Building Energy Use

Weather Normalized Energy Usage
for BEUDO buildings

2017 2018 el
DEGREE DAYS Observed Observed 9% Difference
Value .
Value Value Normal is the average
HEATINGTOTAL 5,310 5,391 2% 5,681 for 1981-2010
COOLING TOTAL 880 1,132 29% 747

Number of heating degree days was very similar in calendar years 2017 and 2018.
Number of cooling degree days saw a 29% increase in 2018.

Total for BEUDO buildings Weather Normalized Site Energy Use (kBtu) increased 4%

NOAA data also shows for Boston area that Cooling Degree Days have increased by 1.5
times since 2000 compared to to 1970-2000 period.
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Indoor Temperatures During a Summer Blackout
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Indoor Temperatures During a Winter Blackout
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Cooling Impact Relative to Streetscape
(90 degree day)

Canopy % <5%




Preparing for and Adapting to Increasing Heat Vulnerability
< _

Baseline Temperature 90 °F, 5
Hot spot temperatures 95-100 °F
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Resilience Strategies

@ A Prepared Community: Strategies to strengthen community, social,
and economic resilience.

Adapted Buildings: Strategies to protect buildings against projected
climate change impacts.

@ Resilient Infrastructure: Strategies to ensure continued service or a
speedy recovery from community-wide infrastructure systems.

An enhanced living environment integrating
air quality, waterways, green infrastructure, and the urban forest as
a system resilient to climate impacts.
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Conver.ting Expanding
Impervious urban forest

surface§ to canopy
vegetation

Resiliency Planning Objectives for Heat
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Other Factors Contributing to UHI Effects

AN

ARLINGTON

BELMONT “

Urban Heat Island:
* Low Tree Canopy %

« High % Impervious Surface e
e Large Square footage of roofs

e Dark roofing surfaces (Low SRI)




Relating Ambient Temperature and Percent Impervious Area
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Green Infrastructure Effectively Reduces Impervious Area

| | g

Infiltration under lawn area Rain Garden at Stata Center, MIT
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Green Infrastructure Effectively Reduces Impervious Area

Percent Impervious Surface
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Cooling Benefits of Increased Green Best Management Practices (BMP)
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Impact of Green BMPs on UH|

Temp reduction by 0.1°F - 6°F
(Average temperature decrease 1.7°F)
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Impact of White Roofs on UHI Max. temp reduction by 4.5°F

(Average temperature decrease 2.4°F)
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Impact of White Roofs on UHI

Max. temp reduction by 4.5°F
- (Average temperature decrease 2.4°F)
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What are Some Preliminary Findings?

Green BMPs may reduce ambient temperature by 0.1°F - 6°F, as a function of reduction of
impervious areas, with an average temperature decrease of 1.7°F (area-weighted average across all
catchments).

White roofs yielded a 2.4°F cooling benefit with a 50% level of implementation across existing
buildings (area weighted average)

White roofs are more effective in cooling, but do not have the additional benefits of water quality
improvement and flood reduction for smaller storms.

Efficient building envelopes keep inside temperatures in a safe range during power outages.

A 1% tree canopy increase relates to 0.12 °F of cooling. For street trees, approximately an average
of 1°F cooling is achieved per tree per 100 ft, with a range between 0.15-6.2°F.
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What can be done?
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COOLING STRATEGIES:

temperatu res be rec

 Existing Condltlon
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Cooling from Green Roofs + White Roofs:

Cooling From New Tree Canopy:
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Green Infrastructure

What would be gained? S

@ Leaching Catchbasins

‘ Rain Garden

Projected Benefits:

About 9,000 MMBtu in energy savings,
equivalent to the annual electricity usage of

+ | Potential Microgrid
approximately 375 households i

. Community Energy

Energy Infrastructure

Up to 2°F reduction in

ambient air temperature [ [7 )
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|dea for change
#2 Super-Resilient Urban Blocks
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maximum resiliency
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To implement
strategies in one
defined area.

It will help reducing
flooding and urban
heat island and
increase energy
resiliency.




What would be gained in the residential block?

Projected Benefits:

Up to

reduction in

ambient air temperature

energy savings if 85% of the

buildings in the block are improved
(in terms of total area), equivalent

in

to the electricity usage from

approximately

solar PV on roof
and battery storage to
provide backup power

asphalt roofing
with light-colored
reflective shingles

ce boiler with air

'rce heat pump system

in each unit

ild on-site rain garden
for stormwater

istruct on-site porous
irfaces for stormwater

rm air sealing
for windows and
exterior doors

i

sub-panel to
isolate critical loads for
backup power
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windows and
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What would be gained in the mixed-use block?

Projected Benefits:

. ) Blue roof

Up to reduction in B v i
3 8 Enhance buildings with

ambient air temperature o1 IR Open space

Implement on-site rain
garden for stormwater

- Green roof
Porous pavement

@ Leaching catchbasins

Implement on-site
porous surfaces for
stormwater

. oo
in energy savings if 88% of A AP
the buildings in the block (in SREEFOPpOrLuines

terms of total area), equivalent

L. Install solar PV on roof
to the electricity usage from and battery storage to

provide backup power

approximately

Replace asphalt roofing
with light-colored
reflective shingles

Replace asphalt roofing
with light-colored
reflective shingles

Implement green roofs for Implement blue/white roofs
stormwater detention and for stormwater detention and
reduction of urban heat island urban heat island reduction



Adapted Buildings: HRI Concord Highlands Affordable Housing

. High performance building
envelope and cool roof (project will
be Passive House certified under
the PHIUS+ 2015 system); can stay in
55-85° F range for 4 days passively.

. Heat recovery ventilation system

3. VRF heat pump and efficient

central hot water system

. 83 kW Solar PV on roof Sub-metered
vtilities and separate sub-panel for
life safety loads (above flood
elevation)

. Sub-metered utilities and separate
sub-panel for life safety loads
(above flood elevation)

. Building energy management

. Top floor community room and
residential units elevated above
flood elevation
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Peformance Standards: Examples

 Green Factor: Seattle
* Green Area Ratio: Washington DC
e LEED Resilience Pilot Credit for Passive Thermal Resilience

e Solar Reflectance Index



Prescriptive Standards: Examples

Minimum landscape requirements
Maximum impervious cover

Passive House building envelope
Community space sheltering requirement
Back up power/energy storage

Cool roof requirement



Thank you!



